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Abstract. First, we present solvability criteria and a formula for construct-

ing closed-form solutions to arbitrary second-order linear difference equations

with variable coefficients and nonlocal multipoint boundary conditions. Next,

we develop an operator factorization method for solving exactly boundary

value problems for second-order linear difference equations with polynomial

coefficients and containing up to the three boundary points. Of particular

relevance here are the references [1, 2, 3].

1. Introduction

Denote by S the linear space of all real-valued functions (sequences) uk = u(k), k ∈
N. Let A : S → S be a second-order linear difference operator defined by

Auk = uk+2 + akuk+1 + bkuk, (1.1)

where ak, bk, uk ∈ S and bk 6= 0 for all k ≥ k1 or preferably for k = 1, . . .. In

addition, let the operator Â : S → S be defined as

Âuk = Auk,

D(Â) = {uk ∈ S : µi1u1 + µi2u2 + . . .+ µi,lul = βi, i = 1, 2, l ≥ 2}, (1.2)

where µij , βi ∈ R, i = 1, 2, j = 1, . . . , l; that is to say Â is a restriction of A

denoted compactly by Â ⊂ A.

Let u
(1)
k , u

(2)
k be a fundamental solution set of the homogeneous equation

Auk = 0 and u
(fk)
k be a particular solution of the non-homogeneous equation



2 I.N. Parasidis and E. Providas

Auk = fk, fk ∈ S. Introduce the vector u
(H)
k = (u

(1)
k u

(2)
k ) and the associated

Casorati matrix along with the vectors

C0 =

(
u
(1)
1 u

(2)
1

u
(1)
2 u

(2)
2

)
, u0 =

(
u1

u2

)
, u

(fk)
0 =

(
u
(fk)
1

u
(fk)
2

)
. (1.3)

Furthermore, consider the equation Âuk = fk for k = 1, . . . l− 3 together with the

two nonlocal boundary conditions and define the l × l matrix

D =



b1 a1 1 0 · · · 0 0 0

0 b2 a2 1 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · 0 · · · · · · bl−2 al−2 1

µ11 µ12 · · · · · · · · · µ1,l−2 µ1,l−1 µ1,l

µ21 µ22 · · · · · · · · · µ2,l−2 µ2,l−1 µ2,l


, (1.4)

and the vectors

ul =



u1

u2
...

ul−2

ul−1

ul


=

(
u0

u2

)
, u2 =


u3
...

ul

 , βf =



f1

f2
...

fl−2

β1

β2


. (1.5)

Then the following theorem holds.

Theorem 1.1. If detD 6= 0, then ul = D−1bf and the nonlocal boundary value

problem

Âuk = fk (1.6)

admits a unique solution which can be obtained in closed-form as

uk = u
(fk)
k + u

(H)
k C−1

0 (u0 − u
(fk)
0 ). (1.7)

The application of Theorem 1.1 requires the analytic form of two linearly

independent solutions and a particular solution of the corresponding homogeneous

and non-homogeneous equations, respectively, which may be very difficult to obtain

in many cases with variable coefficients. Alternatively, we can use a factorization

method.



Factorization Method for the Second-Order Linear Nonlocal Difference... 3

2. Factorization Method

Definition 2.1. A second-order linear difference operator A defined by (1.1) is said

to be factorable when it can be written as a product (composition) of two first-

order linear operators A1, A2 : S → S, viz.

Auk = A1A2uk. (2.1)

Lemma 2.2. An operator A defined by (1.1) is factorable when there exist rk, sk ∈ S
such that

Auk = yk+1 + rkyk, (2.2)

A1yk = yk+1 + rkyk, A2uk = yk, (2.3)

where yk = uk+1+skuk. Moreover, rk, sk are a solution of the difference equations

sk+1 + rk = ak,

skrk = bk. (2.4)

We confine our investigations to the cases where the coefficients ak, bk are

polynomials and there exist polynomials rk, sk which satisfy the system of equa-

tions (2.4).

Theorem 2.3. Let ak, bk be polynomials of degree Deg ak and Deg bk, respectively.

Then the second-order operator A is factorable in the following cases:

(i) If Deg ak < Deg bk and there exists a polynomial sk of degree Deg sk =

0 or 1 . . . or Deg bk satisfying the equation

sksk+1 − aksk + bk = 0, (2.5)

or

(ii) If Deg ak = Deg bk and there exists a polynomial sk of degree Deg sk = 0 or

Deg sk = Deg bk satisfying Eq. (2.5),

Then the polynomial sk can be constructed by the method of undetermined coeffi-

cients and thus rk = ak − sk+1.

Now we state the main theorem in this paper.

Theorem 2.4. Let the second-order linear difference operator Â defined by (1.2)

with l = 3, viz.

Âuk = uk+2 + akuk+1 + bkuk,

D(Â) = {uk ∈ S : µi1u1 + µi2u2 + µi3u3 = βi, i = 1, 2}. (2.6)
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Further, let rk, sk solve the system of difference equations (2.4). If

detD =

 b1 a1 1

µ11 µ12 µ13

µ21 µ22 µ23

 6= 0, (2.7)

then,

(i) The operator Â can be factored to Â = Â1Â2 where the injective first-order

operators Â1 and Â2 are defined by

Â1yk = yk+1 + rkyk = fk, D(Â1) = {yk ∈ S : y1 = u∗2 + s1u
∗
1}, (2.8)

Â2uk = uk+1 + skuk = y∗k, D(Â2) = {uk ∈ S : u1 = u∗1}, (2.9)

where yk = uk+1+skuk, Âuk = Â1yk, u∗
3 = col(u∗1, u

∗
2, u

∗
3), bf = col(f1, β1, β2)

and u∗
3 = D−1bf , and y∗k = Â−1

1 fk.

(ii) The unique solution of the three-point boundary value problem is given in

closed-form by

uk = Â−1fk = Â−1
2 Â−1

1 fk = Â−1
2 y∗k. (2.10)

Finally, we solve the next example problem.

Example 2.5. The operator Â : S → S defined by

Âuk = uk+2 − (k + 2)uk+1 + (k + 1)uk = (k + 1)! ,

D(Â) = {uk ∈ S : u1 − u2 + 2u3 = 4, 2u1 + u2 + u3 = 5}, (2.11)

is injective and the unique solution of (2.11) is given by the formula

uk =
5

4
+

k−1∑
j=1

j!
(
j − 3

2

)
(2.12)

3. Conclusion

The technique presented here is simple to use, it can be easily incorporated to any

Computer Algebra System (CAS) and more important it can be extended to deal

with more complicated problems embracing nonlocal boundary conditions with

many points and non-polynomial variable coefficients.
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