Russian Academy of Sciences

St.Petersburg Department

of Steklov Mathematical Institute

Euler International Mathematical Institute
St.Petersburg Electrotechnical University "LETI"

International Conference

Polynomial Computer Algebra

International Conference on Polynomial Computer Algebra

St. Petersburg, April, 2019

Cankm Ilemepoypz
2019



ISBN 978-5-96511-1234-0

International Conference

Polynomial Computer Algebra 2019
St. Petersburg, Russia

April 15-20, 2019

International Euler Institute

International Conference Polynomial Computer Algebra '2019; St. Pe-
tersburg, April 15-20, 2019 / Euler International Mathematical Institute. Ed. by
N.N.Vassiliev, VVM Pubishing, 2019, 162 p.

The book contains short papers, extended abstracts and abstracts of reports
presented at the International Conference on Polynomial Computer Algebra
2019, St.Petersburg, April 2019

© St. Petersburg department of Steklov
Institute of Mathematics, RAS, 2019



Table of content

Vahagn Abgaryan, Arsen Khvedelidze
How much non-classicality does the Hilbert space of N-dimensional quantum
SYStemM CONBAIN T . ... o 7

Vahagn Abgaryan, Arsen Khvedelidze, Astghik Torosyan
Quantifying non-classicality of the Hilbert-Schmidt ensemble of qubits and
qutrits by Wigner functions .......... ... 9

Semjon Adlaj
Galois elliptic function and its symmetries............ ... ... ... 11

Edik Ayryan, Mikhail Malykh, Leonid Sevastianov, Yu Ying
The symbolic problems associated with Runge-Kutta methods.............. 18

Mikhail Babich
Point symmetries of the Painleve VI... ... ... . 21

Ashot Baghdasaryan
Theorem Proving for Minimal Logic using Machine Learning Techniques ... 22

Alexander Batkhin
Some properties of doubly symmetric periodic solutions to Hamiltonian system

Yury Blinkov, Vladimir Gerdt
On computer algebra aided numerical solution of ODE by finite difference
method .. ... 29

Michela Ceria
Applications of Bar Code to involutive divisions and a greedy algorithm for
COMIPlEtE SO, L e 32

Tisagh Chase
Numerical Symbolic Dynamics: Studies of the Invariant Components ....... 36

Daria Chemkaeva, Alexandr Flegontov
Developing a Wolfram Demonstrations Project for bifurcation diagrams of
nonlinear ODE .. ... 38

Changbo Chen, Wenyuan Wu, Yong Feng
A Numerical Roadmap Algorithm for Smooth Bounded Real Algebraic Surface



Alexander Chistov
Problems around the Newton-Puiseux algorithm and its generalization to
nonzero characteristiC . ... ...t 49

Anton Chukhnov
Constructive tasks in distance Olympiads .......... ... ... 54

Alexander Chupakhin
Relativistic Ovsyannikov Vortex........... .. i i, 57

Grigoriev Dima
Tropical orthogonal linear prevarieties.......... ... ... ... 62

Ivan Dolgakov, Dmitry Pavlov
Landau: language for dynamical systems with automatic differentiation..... 63

Vasilii Duzhin, Artem Kuzmin, Nikolay Vassiliev
RSK bumping trees and a fast RSK algorithm............... ... ... ... . ... 64

Victor Edneral
Calculation of High Orders of the Resonance Normal Form................. 67

David Jeffrey
The Gamma function and its INVErSe .. ... v it 68

Mikhail Kharinov
Sketch on quaternionic Lorentz transformations............................ 71

Vladimir Kornyak
Invariant Projectors in Wreath Product Representations.................... 75

Gleb Koshevoy, Denis Mironov
Cluster monomials and Schur positivity ............... . ... ... ..., 81

Nikolai Krivulin, Elizaveta Romanova
Using tropical optimization in rank-one approximation of non-negative matrices

............................................................................ 85
Gennadi Malaschonok, Gurgen Gevondov

Quick triangular orthogonal decomposition of matrices..................... 89
Gennadi Malaschonok, Alla Sidko

Control of matrix computations on distributed memory .................... 94

Teo Mora, Michela Ceria

Weak Involutive bases over effective rings ........ ... ... oo iiiiL. 99
4



Aleksandr Myllari
Numerical Symbolic Dynamics: Complexity of Finite Sequences ........... 103

Dmitry Nikolayev
Litvinov-Maslov Dequantization of Matrix Algebras: New Insights and
Techniques. . ..o 112

Yuri Palii
Foliation of SL(n) group by conjugacy classes from polynomial algebra point of
74 LS 116

Gaiane Panina
A universality theorem for stressed graphs ......... ... .. ... ... ... ... 117

Sergey Perepechko
Counting perfect matching with a selected edge on C,,, X C,, tori......... 119

Andrey Perevaryukha
Confined stochastic disturbance for functional iterations based on a continuous-
event model of a biosystem ... .. ... 123

Nikolai Proskurin
Differentiation and special functions on finite fields........................ 126

Nikita Reporez
Some new identities for Bernoulli numbers via Central Krawtchouk polynomials

........................................................................... 130
Alexandr Seliverstov

On polynomials of odd degree over reals............. ... ... .. 133
Chen Shaoshi

Apparent Singularities of D-finite Systems ............ ... ... ... ..., 135
Sergey Slavyanov, Olga Stesik

First order linear ODE equivalent to deformed Heun equation............. 136

Sergey Slavyanov, Oleg Marichev
BellY polynomials in Mathematica and asymptotic solutions of integral
EQUALIONS « o oLttt e e 139

Mark Spivakovsky
On resolution of singularities in arbitrary characteristic.................... 141



Chase Tisagh, Aleksandr Myllari
Numerical Symbolic Dynamics: Studies of the Invariant Components...... 142

Kyriaki Tsilika
On computer algebra aided generation of exact solutions for Fredholm integro-
differential equations. ... ... . e 147

Anatoly Vershik
About combinatorial codes that distinguish the realizations of continuous
PTOCESSES v vt ettt ettt ettt e e e e e e e e 151

Gerdt Vladimir
Computer algebra aided generation of a mimetic difference scheme for 3D
steady Stokes How .. ... e 152

Yuri Yakubovich
Sequential construction of samples from residual allocation models ........ 155

Eugene Zima
Factorial polynomials in computer algebra problems related to symbolic
SUMIMATION .« . e et ettt ettt e et e e e e e e e e e e e e et e et 158



How much non-classicality does the Hilbert space
of N-dimensional quantum system contain?

Vahagn Abgaryan, Arsen Khvedelidze, Ilya Rogojin and Astghik
Torosyan

One of manifestations of incompatibility of classical and quantum descrip-
tions of reality is the existence of negative values of the Wigner function (WF),
which serves as a quantum analogue of the probability distribution function.
Though, strictly speaking, the physical reflection of this deviant behaviour is un-
known, it is nevertheless well established that various non-classical physical effects
ranging from quantum entanglement to squeezing may accompany the WF nega-
tivity [1, 2|. Moreover, it may be speculated that there is an interplay between
the intensity of non-classicality of the state and various measures characterizing
the degree of negativity of WF [1, 3|. It seems that there are two natural ways
to quantify the degree of negativity. First one is through distance based measures
describing the remoteness of the (state described by) given WF from the set of
(classical states with) non-negative WFs [1, 3]. While the second by volume based
measures through the volume of the negative part of WF [1].

The aim of this short report is an estimation of the total non-classicality
contained in the Hilbert space of N-dimensional system which is uniformly covered
with respect to the Hilbert-Schmidt measure, through a volume based measure of
negativity!. We define the indicator of non-classicality of the given state p as the
relative measure

1
M,=———F————M Q 1
P Vol (Qp[V]) {w S P | Wp(w) < 0}7 ( )
while the global indicator of non-classicality as
1
= M,dV (p). 2
P Vol (State space) / pdV(p) 2)

Here v is a set of parameters fixing the Stratonovich-Weyl mapping kernel [4, 5].
The estimation of P for infinite-dimensional systems is going to be presented in
the report for the most convenient choices of the Stratonovich-Weyl kernel.

1Under assumption of universality of each of two kinds of measures, this, among other things,
will describe the degree of remoteness of classical and quantum phase spaces.
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Quantifying non-classicality of the Hilbert-Schmidt
ensemble of qubits and qutrits by Wigner functions

Vahagn Abgaryan, Arsen Khvedelidze and Astghik Torosyan

According to modern views, the Wigner quasiprobability distribution, or sim-
ply the Wigner function (WF) provides a qualitative information on many quan-
tum phenomena occurring in diverse physical systems [1].

The WF has all the properties of statistical distributions except one: taking
negative values for some quantum states, the WF turns to be not a proper distri-
bution and hence indicates the existence of truly quantum features which cannot
be described within the classical statistical paradigm. Deviation of the Wigner
quasiprobability distribution from a proper statistical distribution of a physical
system is interpreted as an evidence of non-classicality, or quantumness. In our
report, based on the recently elaborated method of construction of the WF of a
finite dimensional system [2, 3|, we will discuss the following measures/indicators
for quantification of non-classicality of a finite-dimensional system:

1. The negativity probability defined for an arbitrary ensemble of a random
quantum state as the ratio:

P(_)(N) _ Number of states with negative W F

Total number of generated states

2. KZ-indicator introduced by A.Kenfack and K.Zyczkowski [4]:
5o) = / A [W,(Qn)] — 1. (1)
Qn

Here the notation ‘W| means the absolute value (modulus) of the Wigner
function W(Qy), defined on the phase-space manifold Qy .
3. Global indicator of non-classicality defined as the following quantity:

_ Volume of orbit space O[‘Bg\}”]
~ Volume of total orbit space O[Py]’

(2)

where %5\—;) denotes the subspace of a state space 3 with non-negative WF:

y={eeBn [ W,(Qn) 20, VQn}. (3)
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It is assumed that the volume in (2) is calculated with respect to a
Riemannian metric induced by mapping of a state space By to the orbit

space O[] :
Pn
O = 4
All the above mentioned non-classicality measures will be exemplified by
considering the Hilbert-Schmidt ensemble of qubits and qutrits.
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Galois elliptic function and its symmetries

Semjon Adlaj

Abstract. The vast subject of elliptic integrals, functions and curves has
numerous applications in physics. Two distinct approaches to investigating
elliptic functions have become “classical”: that of Carl Jacobi and that of
Karl Weierstrass. Two distinct chapters are dedicated to these two
approaches in Whittaker and Watson (famous) “Course of Modern Analysis”
without attempts of unification. Some have thus claimed that the
Weierstrass approach is more suitable for “theoretical” research, whereas the
Jacobi elliptic functions arise “more frequently” in applications. Yet and
indeed such dichotomy is artificial and the study of elliptic functions and
curves can and must be naturally united via an algebraic approach, readily
producing a most canonical “essential” elliptic function which preserving
transformations acquire “simplest” forms. Although such “natural” building
block, to which we (justifiably) ought to refer as the Galois elliptic function,
has been only recently introduced, its exploitation has already been quite
fruitful. Not merely for efficiently regenerating known and established
results but for attaining new calculations which previously seemed too
cumbersome to pursue via either the Jacobi or the Weierstrass approach.
Here, at PCA 2019, we aim at demonstrating the methodological
significance of this naturally algebraic approach via applying it to a few but
quite fundamental problems of classical mechanics, thereby producing
formidable, hardly standard and highly efficient solutions!

1. Preliminary definitions

For each nonzero ¢, define a homothety operator H(c) via its action on an arbitrary
function f:

H(c)f(x) :=cf (z/c).
Thus, the graph of the function f when subjected to homothety, with ratio ¢, with
the origin being the fixed point, yields the graph of the function H(c)f.
We shall use an upper subscript to indicate the functional transformation

fo(x) =cf (Vea),

11
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which we shall not hesitate to explicitly rewrite whenever a risk of confusing such
a notation, with the common use of upper subscripts for denoting powers, arises.
While keeping in mind that the square root is not single valued, we shall assume,
unless we indicate otherwise, its values to lie in the right half plane without the
imaginary negative ray. With this choice of branch for the square root one
guarantees that

VT =V,
with the bar denoting complex conjugation.
Let H denote the upper half of the complex plane

H:={z: Im(z) > 0}.

The group PSL(2,R) acts faithfully on H, and constitutes the group of its
conformal automorphisms.

Let D denote the fundamental domain for the action of the modular group
PSL(2,7Z), being a discrete subgroup of PSL(2,R), upon H

D = H/PSL(2,7).

Denoting by L the set of lattices, that is the set of discrete subgroups of rank 2, in
C, we may identify D with the quotient £/C*, that is, the quotient of the action
of the multiplicative group of invertible elements of C upon L.

The Eisenstein series of index k is a function (G, on the upper half plane H,
determined by the equality

Gr(zx) := Z (max+n) 2k
(n,m)€Z®Z\(0,0)

When the index k is an integer strictly exceeding 1, G, is a modular form of weight
k. In other words, it is then a holomorphic function on the extended upper half
plane H U oo, satisfying the relation

G (‘”” i b) = (cx + d)*Gy(z) ¥ (g Z) € SL(2,Z).

cr+d
Exploiting the identity
Gr(o0) = 2¢(2k),

where ( is the Riemann (-function and setting

A :=4h3 —27h3, hg = 15G3, hy = 35G3,

se=a(2) o (2] o

Thereby A is a cusp form of weight 6.
The Klein j-invariant is defined as

one finds that

12
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and can be viewed, being a modular function of weight 0, as a bijection from

the extended fundamental domain D U co onto the Riemann sphere C U oo with a

(simple) pole at infinity. The j-invariant is evidently fixed under the transformation
(hg, hg) — (Czhg, Cghg).

For an arbitrary pair (hs, h3), subject to the condition that A does not vanish, the
Weierstrass elliptic function @ is the solution of the differential equation

y? =4(y° = hay — hs) = 4(y — ex)(y — e2)(y — e3) (2)
with a (double) pole at zero. The function p represents a one parameter family of
Weierstrass elliptic functions

Fo:={p°: z cp(/ex), ce C*}. (3)
Each p¢ € F, satisfies a corresponding differential equation
y? =4(y° — hay — h3) = 4y — ce1)(y — ce2)(y — ce3), (4)

and the whole family F,, shares a “common” j-invariant j(7), corresponding to a
single point 7 in D.

For a fixed k, we define the Jacobi elliptic function sn as the vanishing at zero
solution of the differential equation

y/2 — (1 o y2> (1 o k2y2) ,
whose leading Maclaurin series coefficient is 1. The constant £ is called the elliptic
modulus.

Every Jacobi elliptic function sn represents a one parameter family of elliptic
functions

Fen :={H (V¢ )sn: ceC*}. (5)
Each H (y/c )sn € Fg, satisfies a corresponding differential equation

y? = (1—y*/c) (1 —K*y?/c).

2. The Galois essential elliptic function

Let « be a parameter, « € C \{—2/3,2/3}. Define an essential elliptic function
R as the solution of the differential equation

y? =4y (v’ +3ay+1), (6)

with a (double) pole at zero.

An essential elliptic function R, differs from Weierstrass elliptic function g, by an
additive constant. Explicitly, if g, is the Weierstrass elliptic function, satisfying
the differential equation

y? =4y’ - B’ =Dy —a(l-20%) =4y —a)(y—(a—f)) (y — («—1/5)),
8= (3a+d)/2, d®:=9a2—4, (7)
then
Ra = Pa — Q.

13



4 Semjon Adlaj

In particular, the essential elliptic function R, coincides with the Weierstrass
function g, when a = 0. Incidentally, the discriminant of either the cubic
appearing on the right hand side of equation (6) or the cubic in (7), which we
shall call the discriminant associated with o, is d*> = (3 — 1/6)2 =9a® — 4, so it
does not vanish since, by assumption, o # +2/3.

Each Weierstrass elliptic function g, satisfying a differential equation (2),
represents a family of Weierstrass elliptic functions F,, (3). Fix such a function
©, representing such a family F,,, so as to assume the pair (ho,hs) and its
corresponding discriminant A being fixed. Let 7 be the unique point in D whose
image j = j(7), given by (1), matches the j-invariant of this family. We shall
associate six essential elliptic functions with 7, and thus with F,, as long as 7 is
neither a cube root of 1 nor a square root of —1.

If ¢ is a root of the hexic
c——=c" +

AR (8)
then the differential equation (4), satisfied by p°¢ for that particular choice of
¢, acquires the form of the differential equation (7) satisfied by ., where « is
determined by the choice of c¢. The assumption 7 # ¢ implies that hg # 0 and the
hexic (8), then being separable, possesses six distinct roots, which we might enlist
in three pairs (c1, —c1), (c2, —c2) and (c3, —cs), where

&= R - e
(e1 —e2)(e1 — e3) (e2 —e3)(e2 —e1) (e3 —e1)(es —e2)
For each root pair (¢, —cy,), n = 1,2, 3, we obtain a corresponding factorization of
the cubic on the right hand side of (4), with ¢ replaced by ¢, and —c¢,, respectively

y3 - CihQ?J - C?th = (y - an) (y - (an - 571)) (y - (an - 1/571))

y? — cihay + chhs = (y + an) (y + (an — Bn)) (¥ + (. — 1/8))

Here, the additional assumption 7 # e?™/3 guarantees that the three values oy, oo

and ag are pairwise distinct, whereas we have already ensured, with the assumption
T # 1, that none of the them vanishes. Thus, six distinct Weierstrass functions g,,,,,
©—_a,, n = 1,2,3, are obtained, and we may, as promised, associate six essential
elliptic functions R, , R—a,, n = 1,2,3, with F,,. Plainly, for each n, n = 1,2, 3,
we have

Ran = Pa,, — Qn, R—an = P—q, T Qn, OQn = Cpen,

and for each n, n = 1,2, 3, the discriminant associated with a, is
d?2 =9a2 —4=cSA.

The three pairs (dy, —dy), (d2, —d2) and (ds, —d3) can be viewed as the roots of
the hexic

4(d®+1)° = 27jd® = 4 (d° +3d* +3 (1 — 95/4) d® + 1), 9)

which is separable aside from the two special cases corresponding to 7 = ¢ and

T = e2™/3_ We now consider these two cases.

14



Galois elliptic function and its symmetries 5

If 7 =i then hy = 0, j = 1 and the hexic (9) factors to
4 (d® +4) (& —1/2)".
If 7 = ¢?™/3 then hy = 0, j = 0 and the hexic (9) factors to
4 (d®+1)°.
Instead of writing the hexic (9) we could have written a hexic which roots are the
three pairs (a1, —aq), (@, —as) and (as, —ag). This is the hexic
4(30%=1)° —j (9a% —4). (10)

Only three distinct roots and three essential elliptic functions correspond to 7 = 1.

These are
{Ra L a=0, i\/§/2}.

Only two distinct roots and two essential elliptic functions correspond to 7 =

e2™/3 These are
{Ra D a= :I:\/g/S} .

The hexic polynomials (8), (9) and (10), when viewed as cubic polynomials of ¢,
d? and o?, respectively, correspond to one and the same point in D. In other words,
theses three cubics possess the same j-invariant. The latter is obtained from the
j-invariant of the original cubic (2) via the transformation

- J

J= -1
which constitutes a linear fractional transformation of order two, with zero being
its only fixed point. Note that the discriminant of the cubic (8) for ¢? does not
vanish when 7 = €2™"/3 although it does for either one of the cubic polynomials
(9) for d? or (10) for a?.
We may “restore” the fundamental domain by adding two functions, corresponding
to the two excluded values +2/3 for . When o = +2/3 equation (6) degenerates
to

2
y? =4y(y+1)°,

and we, thus, regard the functions ctg? and cth?® as the functions corresponding
to a = 2/3 and o = —2/3, respectively, where

62ix+12 62x+12
Cth(ﬂj) - <—> ’ Cthz(ﬂf) = (6212 _ 1) )

622'33 -1

and we regard the functions csc? and csh? as the functions corresponding to o =
400 and @ = —o0, respectively, where

2 2 2 2
2 = -\ — h2 = S —— .
csc”(x) <€w — e—m> , csh®(z) pra—

15



6 Semjon Adlaj

3. The Galois alternative elliptic function

Define an alternative elliptic function S as the vanishing at zero solution of the
differential equation

y? = (1-8y*) (1-v°/8),
whose leading Maclaurin series coefficient is 1.

Set the elliptic modulus k£ equal to 8. The alternative elliptic function is then a
representative of the family F, introduced in (5), namely

Sg=H <\/B ) sn,
and its square is the reciprocal of an essential elliptic function, namely
S;=1/R_a. (11)

The degenerate elliptic function S_; and S; correspond to o = 2/3 and av = —2/3,
respectively

Soa(e) = tan(e) = -~ T 8(@) = teb(e) = G
_1(z) i=tan(r) = —5——= x) = r) = —5——.
! i(e2e 1 1) & 27 + 1
Two functions are candidates for representing the degenerate elliptic function Sy,
corresponding to a = +00 and o = —o0, respectively
Si(x) :=sin(z) = %, S_(x) :=snh(z) = c _26
i

4. Essential relations amongst Galois elliptic functions
With
pp_B3a-2 (B-1 °
3a+2 B+1)7

({2 )y )

satisfies the differential equation
y?*=(1-0Ba+2)y?) (1-(Ba-2)y?),
and, moreover, the identity
S?2=Ra+3a+R,' =W, +2aq, (12)

the function

where the sum
Wa = Ra +a+R"
is viewed as a Weierstrass function, satisfying the equation
Yy =4y +20)(y—a+2)(y—a-2),

holds. Thus, identity (12) establishes a well-known (yet, perhaps, somewhat
disguised) link between Weierstrass and Jacobi elliptic functions. The function

16



Galois elliptic function and its symmetries 7

W, represents a family Fp,, = {WS : ¢ € C*}, corresponding to a point 7 € D.
We proceed to determining a particular representative W¢ differing from an
essential elliptic function, associated with 7, by an additive constant. Evidently,

forc=1/d=1/v9a? —4,
WS +2ca=R_2¢ca

is then satisfied by that, sought for, representative W, whence

WOé +2a = Ri?coﬂ
and
82 = 1/726120017
reestablishing that
S;% - 1/7—\)'720047

in agreement with formula (11).
Applying the identity
1 (RLY
1 (R—z) =Ra+3a+R,",

to formula (12), we arrive at the equalities
2 2
S 2= 1 R_Cl = &
4 \ Rq S5/’

[ s @ar=m(ss @),

where 2z is the root of R, closest to zero. Globally, of course, the latter equality
holds true “modulo 277"

implying the relation
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The symbolic problems associated with Runge-Kutta
method

Edik Ayryan, Mikhail Malykh, Leonid Sevastianov and Yu Ying

Abstract. The talk is devoted to application of the computer algebra sys-
tem Sage to search of coefficients of Butcher matrix and the organization of
calculations by implicit finite difference schemes.

The Runge-Kutta method is the most popular numerical method for solving
of ordinary differential equations (ODE), however the development of this method
indicate some symbolic problems.

Let’s review some results on Runge-Kutta scheme [1]. For an autonomous
system

i = F(Z) (1)

Runge-Kutta scheme with s stages can be written as

EJZ:ﬁ a‘c’+dt2aijl$j , 1=1,2,...,5s (2)
j=1
and
F=a+dty bk (3)

We will write the coefficients a;; and b; in Butcher matrix, for ex. for s = 2

C1 | 11 a2
Co | G21 Q22
| b1 by

Hereinafter
S
C; = E Q5.
J=1

These coefficients select so that the difference scheme approximate the ode (1)
with some order p. For s = p = 4 appropriate numerical values for the coefficients
was found by Kutta in the XIX century. The usage of Runge-Kutta scheme for
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the solving of given ODEs means the numerical calculations in the floating-point
arithmetic.

However the problem about the finding the coefficients of Butcher matrix
is pure algebraic, so now we can try to solve it with the help of computer alge-
bra systems like Sage or Maple. This is the first symbolic problems associated
with Runge-Kutta method. In our paper we want to present our algorithms for
symbolical calculation of the Butcher matrix and its realization in Sage.

It should be noted that conditions of approximation and other conditions
doesn’t define the coefficients of Butcher matrix unambiguous. From geometrical
point of view the list of coefficients of Butcher matrix is a point in affine space
(Butcher space) and appropriate points form a variety in this space. As in Sage
there are some tools for a research of a set of solutions of systems of the algebraic
equations, we can try to describe the varieties in Butcher spaces.

The Runge-Kutta scheme is explicit iff

in this case the numerical calculation don’t demand the solving of nonlinear alge-
braic equations. This is most investigated case, for small s the Butcher varieties
ware described by Butcher oneself, now we know approximate values of a;; for
schemes with s =9 [2].

The implicit Runge-Kutta scheme is interesting because they can save some
symbolic properties of exact solution. By Cooper theorem symplectic Runge-Kutta
scheme save exactly all quadratic integrals of motion [3]. The symplecticity give
algebraic conditions for Butcher matrix, we can try to investigate the varieties in
Butcher space by the help of Sage.

In our numerical experiments these varieties were rational with singularity
at point with a;; = 0. Thus there are infinite set of Butcher matrices with rational
coeflicients.

Organization of calculations by the help of implicit Runge-Kutta scheme
demands the solving of algebraic equations on each step. Investigation of the alge-
braic system is the second symbolic problem associated with Runge-Kutta scheme
which we can try to solve by Sage.
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Point symmetries of Painleve VI.

M. V. Babich

Abstract. 1 will talk about a puzzling resembling of two different objects,
namely two classes of equivalence of Painleve VI equations. One class is an
orbit of the group of birational point symmetries of the Painleve VI equation.
This group is the symmetric group of four objects X4. The second one is an or-
bit of much more wide group of arbitrary point transformations of Painleve VI
equation. I will demonstrate that the subgroup of all point transformations
preserving the form of the Painleve VI equation is just >4. The talk is based
on the joint work with L. A. Bordag.
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Theorem Proving for Minimal Logic using Machine
Learning Techniques

A. Baghdasaryan

Abstract. Automated theorem provers based on different systems of minimal
logic experience some difficulties because of many problems. One of them is
a stoup selection rule, when a formula from the context should be selected
to be considered as a stoup. Neural networks are added to these systems of
minimal logic and they are used to determine which formula from the context
will become a stoup. This partially solves the problem of rule selection and
gives reduction of time in theorem proving.

Introduction

There are different kind of systems in which rule selection problem leads to proof
search inefficiency issues. Because of that problem automated theorem provers
based on that systems experience some difficulties. Two systems for propositional
fragment of minimal logic (SwMin and ScMin) were introduced in [1]. In these
systems the problem of rule selection remains unsolved. There is a stoup selection
rule in SwMin, when a formula from the context should be selected to be consid-
ered as a stoup. Though this is insufficient as it requires many branches to prove,
which may be unnecessary. We extend those systems to the minimal fragments of
first order predicate logic SwMinPred and ScMinPred and prove their equiv-
alence to Hentzen type systems considered in [2]. We developed prover SwProv
based on SwMinPred system. To avoid rule selection problems the neural net-
works are deployed in SwProv prover (SwN N Prov), which helps us to make a
"right" decision. At each step of the proof, if there are multiple choices of the in-
ference rule to be applied at the current step, neural network is used to determine
which formula from the context will become a stoup.
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1. Sequent To Vector Transformation

Firstly all formulas in sequents are represented in Skolem standard form. To be
able to use neural networks in the proof search it is necessary to train network
model against provable sequents. To proceed with that we introduce numerical
representation for the sequents assigning a specific number to each symbol. Based
on that representation similar formulas will get identical vectors. After that au-
toencoder [3] is trained to get fixed length encoding for each sequent. As a result
we get numerical representation for sequents.

2. Neural Networks in Proof Search

2.1. Data collection

Standard library for first-order predicate logic problems are used as a training
dataset. For each element in training set SwProv prover is run and which generates
training examples. At each point of proof tree, where a stoup formula has to be
selected , all sequents in that branch of tree are considered and sequence of vectors
is generated by "Sequent to Vector" transformation. To differentiate successful
outcomes while training neural network one needs to take numerical representation
for each stoup candidate formula and corresponding ground truth label (whether
this is the right selection).

2.2. Neural Network Architecture

Used neural network model consists of gated reclified unit(GRU) [4] as recurrent
layer and 2-dense layers with skip connections [6] and residual blocks [5].

The output of recurrent layer (feature vector extractor module) is concate-
nated with numerical representation of stoup candidate and then is mapped to
2-length one-hot encoded vector via dense layer with softmax activation function.
As a final step cross entropy is used as a loss function:

Hya) =~ 3w < log(p(ys)) + (1 = ) * log(1 — p(s)) 1

, where y is the label and p(y) is the predicted probability of the candidate formula
being right for all N examples.

Conclusion

In result of constructing new proof systems for minimal logic of predicates and
deploying concept of neural network in the prover experiments revealed proof
search space reduction and the level of accuracy up to 75% training 150 epochs.
Compared to the prover without neural network time spent for the proof is reduced
for almost twice.
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Some properties of doubly symmetric
periodic solutions to Hamiltonian system

Alexander Batkhin

Abstract. We consider the structure of doubly symmetric periodic solutions to
a Hamiltonian system with two degrees of freedom, which canonical equations
of motion are invariant under the action of a forth order discrete group of
linear automorphisms of the extended phase space. Structure and bifurcations
of doubly symmetric periodic solutions are investigated. It is shown that in
the case of period doubling bifurcation there always exists a pair of singly
symmetric solutions with double period. Some examples of families of doubly
symmetric periodic solutions of the Hill problem and of the restricted three-
body problem (in the case of equal masses) are considered.

Introduction

Consider a time-independent non-integrable Hamiltonian system with two degrees
of freedom, which canonical equations of motion posses the only first integral
H(z) = h, where z = (x,y) € M = R* and H(z) is a smooth Hamiltonian
function of a system. Let the equations of motion

z = J grad H(z), here J — symplectic unit, (1)

are invariant under the discrete group G = Zs ® Zs of linear automorphisms of the
extended phase space R x M. Two generators g1, g2 of the group G are involutive
operators, i.e. g7 = id, the third non-trivial transformation g3 = g1 0 g = g2 0 g1.
Then each solution z(t, zg) to equation (1) with initial condition z(0) = zy belongs
to one of the following group depending on the type of symmetry.
e Non-symmetric solutions, which change under any automorphism g¢;;; =
1,2,3.
e Singly symmetric solutions, which are invariant under only one automorphism
gii =1,2,3.
e Doubly symmetric solutions, which are invariant under any automorphism
gi, 1 =1,2,3.
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Let z(t,z0) be a periodic solution with period T'. In the case of time-inde-
pendent system solutions z(t, zg) belongs to a family of one-parametric periodic
solutions. The parameter of such family is a value of the first integral H(z) of
system (1). The family of periodic solutions can be either closed or it has a natural
termination. Such characteristics of a periodic solution as its dimension, period T,
corresponding value h of the first integral, stability S change smoothly along the
family, whereas the type of the symmetry is the global invariant of the family. A
family can intersect another one sharing a common solution, but any family can
be continued further in an unique way.

Let consider that the phase coordinates z are chosen in a such manner that
the involutive transformation g; has the form g; : (¢,2) — (ot, G;z), where o = £1,
G; is a constant matrix. Let ¥; = {z|g;(z) = z} is an invariant set of the transfor-
mation g;. Then there exist g;-invariant periodic solutions, which are completely
defined by a part of their phase trajectories contained between points zy and
z(T/2) lying on the ¥;.

We study in linear approximation the dynamics near doubly symmetric pe-
riodic solution z(t,zg) and provide its bifurcation analysis as well.

1. Properties of doubly symmetric solution

Dynamics of the system (1) in the vicinity of a solution z(¢) is described in linear
approximation by matrix Z(t,z), which is the solution to the Cauchy problem of
the Poincare variational equation

Z = JHessH(z)Z, Zy= FE*,

where Hess H(z) is the Hessian of function H computed along the solution z(¢, z).
Matrix Z(t) is symplectic: ZTJZ = J and its characteristic polynomial P()) is
reciprocal. Monodromy matrix M of periodic solution z(t,z¢) is Z (T, Zy) with a
property Z(t+1) = Z(t)M. Eigenvalues pj of matrix M are called multiplicators.
Monodromy matrix M has the following properties:

e multiplicators p; are mutually complex conjugate and mutually inverse;
e matrix M has eigenvector vy = J grad H(zg), corresponding to multiplicator
p1,2 = 1 with multiplicity 2;
e characteristic polynomial P(\) of matrix M is factorized
PA)=(A—-12(\=252+1),
where S is stability indez of the periodic solution z(t,z).

If solution z(t,z¢) is singly g;-symmetric with initial condition zy € 3;, then
in a half of period z(T'/2, zy) € ¥;, and monodromy matrices computed from the
points zy and z(7/2) are correspondingly

M; = GiZ™(T/2)G;2(T/)2), M; = Z(T/2)G;: 2" (T/2)G;,
where é, =G;J,1=1,2.
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If solution z(t,z¢) is doubly symmetric with initial condition zy € ¥;, then
in a quarter of the period z(7T/4,zq) € ¥3_; and monodromy matrices computed
from the points zg and z(7'/4) are

M, = éiZT(T/4)cN;3_iZ(T/4)]2, M, = [Z(T/4)CN¥Z-ZT(T/4)CN¥3_Z~]2.

Matrices M; and ]\71 are similar but the similarity transformation is too awkward.
The stability index of such solution can be computed by formula

S =2(142Z39214 + 2241203 — 4211 233 + 2231 713 — 2Z42224)2 -1,

where Z;; are components of matrix Z(1'/4,Zp). So S gets its minimal value
equals to 1. Special structure of monodromy matrix of symmetric solution yields
to presence of inner symmetry of M:

mi1 = M33,1M22 = Ng4,M12 = —1M43, M 14 = —1MN23,1M21 = —1N34,TM32 = —1N4].

2. Bifurcations of periodic solutions

In [1] a linear transformation with symplectic and orthogonal matrix A was pro-
posed which is completely defined by normalized vector H of the phase velocity
vi(zo): H = vi(zo)/[vi(zo)|-

The bifurcation analysis of families of singly symmetric periodic solutions
was provided earlier (see |2, 1]. Here we give such analysis for doubly symmetric
solutions.

In the case S = 1 there are two possibilities. Either matrix M has only
one elementary divisor (A — 1)4, or it has two elementary divisors (A — 1)? and
(XA — 1)2. The first one corresponds to a fold (saddle-node) bifurcation of periodic
solution at which the family riches the extrema of H. The second one corresponds
to a pitch-fork bifurcation, where a pair of singly symmetric periodic solutions
appears.

In the case S = —1 period doubling bifurcation takes place. For singly sym-
metric solution the matrix M has 2 elementary divisors (A — 1)2 and (A + 1)2.
The eigenvector corresponding to the first elementary divisor gives the direction
of continuation of the initial family of periodic solutions. The second eigenvector
gives the direction of continuation of a new family of periodic solutions with period
T’ = 2T. This family has the extremum on value H(Z) and preserves the type of
symmetry of the initial family.

Let consider the case of doubly symmetric periodic solution.

Statement 1. The monodromy matrix M of doubly periodic solution in the case
S = —1 always has 3 elementary divisors (A —1)%, A+ 1 and X + 1. Eigenvector,
corresponding to the first elementary divisor gives the continuation of initial family.
Eigenvectors, corresponding to the divisors A + 1, give the continuation of the
family of double periodic solutions but singly symmetric each. These double periodic
solutions have different types of symmetry. The families of double periodic solutions
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rich the extremum of H(z) at the bifurcation point. There are two scenarios of
pertod doubling bifurcation in the case of doubly periodic solutions.

e Fach of two new families has the same type of extremum at the bifurcation
point (minimum or maximum). In this case both new families of singly sym-
metric solutions with period T' = 2T exist near the initial family of doubly
symmetric solutions.

e Two new families has different types of extremum and thus at each value
of the family parameter h there exist the initial family of doubly symmetric
solutions and only one new family of singly symmetric solutions with certain
type of symmetry.

Both these scenarios were investigated for periodic solutions of the Hill prob-
lem [3] and for periodic solutions of the restricted three body problem in the case of
equal masses. Some new families of periodic solutions were found and were studied
as well.

The previous situation is a special case of period multiplying bifurcation.

Statement 2. Let doubly symmetric periodic solution with period T has the stability
index S = cos2mp/q, where p € Z, q € N.

e [f both p and q are odd, then there exists in vicinity of initial solution one
family of doubly symmetric periodic solutions with period T' = qT;
o [f at least one of the numbers is even, then there exist four families mutually
pairwise symmetric singly symmetric periodic solutions with period T' = ¢T .
In all cases except the case p/q = 1/3, new families reach the extremum on H(z)
at the branching point.
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On computer algebra aided numerical solution of
ODE by finite difference method

Yury A. Blinkov and Vladimir P. Gerdt

Except very special cases, nonlinear ordinary differential equations (ODE)
admit numerical integration only. Historically first and one of the most-used nu-
merical methods is finite difference method (FDM) [1] based on a finite difference
approximation (FDA). As this takes place, the quality of numerical solution to
PDE is determined by the quality of its FDA and by the method of numerical
solution used to solve the difference equations comprising FDA.

One of the most challenging problems in to construct FDA which mimics basic
algebraic properties of the ODE. Such mimetic FDA are more likely to produce
highly accurate and stable numerical results (cf. [2]). In particular, a mimetic FDA
is to be totally conservative (see [3], Def.1) what means the inheritance of algebraic
integrals of the ODE at the discrete level.

Example. We consider the following autonomous ODE system |[3]

p =qr,
q=—pr, k = const, (1)
=~ k’pq

which has two quadratic integrals

p? +¢®> =const and k?p* 4+ r? = const. (2)
We use the denotations x := {p, ¢,r} and F(x) := {qr, —pr, —k?pq} and consider
the implicit midpoint finite difference discretization of system (1)

dX Xn+1 — Xn o F(Xn+1) + F(X'n,)

@ P At 2 (3)

It is known [4] that the scheme (3) preserves integrals (2). Instead of application
of the Grobner bases technique for solution of algebraic system (3) for transition
to the next layer, as done in [3], we suggest computationally much more efficient
the stmple iteration method.

The work is supported in part by the Russian Foundation for Basic Research (grant No. 18-51-
18005).
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The construction of a simple iteration is based on the following quadratic
formulas for monomials occurring in F(x)

u2:u2_u/2+u/2:(u_u/)(u+u/)+

+u? ~ (u—u)2u 4+ u? = 2uu — u'?
w = (u+v)* = (u—0)*)/d~(2u+v)W +0) - W +0)?) -

/ / / N2 . / / !/ (4)
—2u—v)(u =)= (v —=2v")))/Ad=uw"+uv—uv

u3:u3_u/3+u/3:(u_u/)(u2+uu/+u/2)+
+u? = (u—u)3u? +u? = 3uu? — 20

and the qubic one

/! /! / /
uzv:uuvmuuvjtuuv +uwuv —

(5)

— (3 — )u*v" = u?v + 2un'v" — 2u"*

The rule (5) can be easily implemented in a user’s programming language of any
modern computer algebra system and allows obtain the code for numerical com-
putations. Thus, for the system (1) and its implicit scheme (3) the simple ireration
method yields

( Pnt1 — Pn - Qn+17q;+1 + Q;L_Hrn—i—l - q1l1+17";L+1 + qnTn —0
At 2 ’
dn+1 — qn —pn+17°;b+1 - p;1+17"n+1 +p;1+17°7/z+1 — PnTn
At 2
Tn+1 — Tn - _k2pn+1Q;L+1 B kzp;z—l—l%z—i-l + ka;’L—i-lq’:L—Fl B kzann -0
\ At 2

In the matrix form obtained by using the computer algebra system SymPy (https:
//www.sympy . org) is given by

, , Pn+1
Tnt1/2 1/At Prs1/2 i1 | =
k‘2q7'1+1/2 k2p;1+1/2 1/At Tn41

P/ AL — @11 /2 4 @i /2
= qn/At—l—p;le;H_l/Z — PnTn/2
/At + k2p%+1%+1/2 - kQPnQn/2
The numerical results obtained with SciPy (https://www.scipy.org/) and
illustrated by Fig. 1 show that there is no accumulation of numerical error, as

distinguished from the output of standard ODE solvers lsoda, vode, dopris,
dop853 of SciPy.
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H 12 + ¢ — 1] = 6.2¢ — 04
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FIGURE 1. Dynamics of numerical error for p =0, g =r =1 and
k=1/2
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Applications of Bar Code to involutive divisions
and a greedy algorithm for complete sets

Michela Ceria

Abstract. In this paper, given a finite set U of terms in n variables, we see
how to compute its Janet decomposition and detect its potential completeness
by means of its Bar Code. Moreover, we study an algorithm aimed to return a
variables’ ordering such that U is complete (or failure if such an ordering does
not exist). In principle, one should check all n! orderings, but our algorithm
exploits a sort of backtracking technique to skip many of these tests.

Let k be a field and P := k[x1, ..., z,] the polynomial ring in n variables and

coefficients in k. The semigroup of terms generated by X := {zq,...,x,} is: T :=
{7 =2 20|y = (71, .., ) € N"} C P. In [6], taken a monomial/semigroup
ideal J C T and its minimal set of generators G(.J) Janet introduced the notion of
multiplicative variables and the connected decomposition of J into disjoint cones,
giving a procedure to construct such a decomposition, by computing a complete
generating set H O G(J) for J, i.e. a particular generating set allowing such a
decomposition. In particular, Vv € T, there is a unique decomposition v = tu,
with ¢ € G(J) and u a product of powers of ¢’s multiplicative variables. While
reducing a term w w.r.t. an ideal whose initial ideal is J, we can only use the
polynomial whose leading term generates the cone containing w.
Bar Codes [1, 2|, are combinatorial objects representing finite sets of terms M C T.
In particular, if M = N(7) is the Groebner escalier of a zerodimensional ideal I<P,
many of its properties can be directly deduced by its Bar Code [1, 2, 3, 4, 5]. In
particular, in this paper, we see that Bar Codes are good tools to study Janet
decomposition. Given a finite set of terms M, its Bar Code allows us to find the
multiplicative variables of its element and to detect its completeness according
to Janet’s definition. Moreover, we give an algorithm that, using backtracking
techniques, allows to find out if there is a variables’ ordering such that M is
complete without trying all the n! variaﬂes’ orderings.
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1. Janet decomposition via Bar Codes and a greedy algorithm

Referring to [2, 1], we recall first the main facts and definitions about Bar Codes.

Definition 1 (|2, 1]). A Bar Code B is a picture composed by segments, called bars,
superimposed in horizontal rows, which satisfies conditions a.,b. below. Denote

by Bg-i) the j-th bar (from left to right) of the i-th row (from top to bottom),
1 <i<nmn, i.e. the j-th i-bar, u(i) the number of bars of the i-th row, ll(Bg-l)) =1,
Vi e {1,2,...,u(1)} the (1—-)length of the 1-bars, li(ng)), 2<k<n,1<i<k-1,
1 <j < pu(k) the i-length of ng) (number of i-bars lying over Bg.k)):

a. Vi, 7,1<i<n—1,1<5<pu(3), je{l,..,uli +1)} st B%Jrl) lies under B;i)
b. Vir, i € {L,.on}, SHO L(BYY) = Y 0BG,

Jj1=1 J2=1
We outline how to construct the Bar Code associated to a finite set of terms.
First, given a term ¢ = z]' ---z)» € T C P, for each i € {1,...,n}, define 7'(¢) :=
xzl' - adn € T. Taken a set M C T, |M| = m < oo, for each i € {1,...,n},
we define MU := 71(M) := {r'(t)|t € M}. Now we order the elements of M
increasingly w.r.t. Lex, getting the list M = [t1, ..., t,,], we construct the sets M7,

and the corresponding lexicographically ordered lists MM, for i =1,...,n. We can

define the n x m matrix of terms M s.t. its i-th row is M[Z], 1 =1,...,n. We take
then the i-th row of M, consider all the sublists of repeated terms and underline
each of them with a segment, deleting the terms of M[Z], 2 < i < n and leaving
only the segments (i.e. the i-bars), getting the desired Bar Code.

We recall now Janet’s definitions of multiplicative variable and complete set, noting

that they depend on the variables’ ordering, which in our caseis x1 < 29 < ... < xy,.

Definition 2. [6, ppg.75-9] Let U C T be a set of terms and t = x{* -+ -z~ € U.
A wariable x; is called multiplicative for t w.r.t. U if there is no term in U

of the form t' = xfl mfjx;ﬁ? coexnoowith B > aj. We denote by M;(t,U)
the set of multiplicative variables for t w.r.t. U and by NMy(t,U) the set of
the variables that are not multiplicative for t w.r.t. U non-multiplicative vari-
ables). The cone of t w.r.t. U is the set Cy(t,U) := {tx} ---x) | where \; #
0 only if x; is multiplicative for t w.r.t. U}. A set of terms U C T is called com-
plete if for every t € U and xv; € NM;(t,U), there exists t' € U such that

xzjt € Cy(t',U); t' is called involutive divisor of z;t w.r.t. Janet division.

Let U C T C k[z1,...,x,] be a finite set of terms, B its Bar Code. To detect
multiplicative variables for the terms in U, V1 < i < n, place a star symbol % on

the right of B\, : then V1 < i <n—1,¥1 < j < pu(i) — 1 let B}” and B, be
two consecutive bars not lying over the same (i 4+ 1)-bar: place a star symbol x
between them. We have
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Proposition 3. Let U C T be a finite set of terms and B its Bar Code. For each
teU x;, 1 <i<n is multiplicative for t if and only if, in B, the i-bar Bél), over
which t lies, is followed by a star.

Proposition 4. Let U C 7T be a finite set of terms and B be its Bar Code. Let
teU, x; € NM;(t,U) and BS.Z) the i-bar under t. Let s € U; s |y x;t iff

1.s|at _ 3. Vj' with nonzero exponent in %t there 1s a star after the
2. s lies over B§:)_1 j'-bar under s.

Theorem 5. Let U C T be a finite set of terms and B be its Bar Code. Then U 1is

a complete set if and only if Vt € U, Vx; € NM;(t,U), called Bgi) the i-bar under
t, there exists a term s € U which satisfies conditions 1,2,3 of Proposition 4.

According to Proposition 4 and Theorem 5, given a finite set of terms U C T,

to check its completeness we take, Vt € U, Va; € NM;(t,U), the i-bar Bg-z), 1<
J < pu(i) under ¢t and we look for an involutive divisor among the terms over Bﬁl,
checking conditions 1,2,3 above. Such a construction depends on the variables’
ordering, so if we want to find out whether there is one making a given set complete,
in principle, we should draw and check n! different Bar Codes, a tedious and time
consuming task. We can look for the solution of our problem in a “greedy" way, so

that most of the tests can be skipped, by means of the Bar Code and of
Corollary 6 ([6, 7]). Let U = {t1,...,t;m} € T be a finite set of terms, t; =
()

(i) (i) (i) o
g a, I % -1 _ _t . A Y /
xy' xy” andt, =xyt -z, = NOR fori=1,...m. LetU" = {t|,...,t.},
n

a = max{ozgf), 1 <i<m}. Foreach N <a, I :={i:1<:< m|oz£f) = A} is
the set indexing the terms in U with n-th degree equal to \, and Uy = {t}|i € I }.
Then U 1s complete if and only if the two conditions below hold:

1. For each \ € {ozgf), 1 <i<m}, Uy is a complete set;
2. Vt; € U, A < «, there exists j € {1,...,m} s.t. t; € C;(t},U’) and t); € Uy ;.

The idea consists in constructing the Bar Code B of the set U C T from
the maximal variable to the minimal one, checking if, with the ordering choices
made up to the current point, the conditions of Proposition 4 hold for each term
in U, and going back retracting our steps in case of failure. In the first step we
look for the subset ¥ C X of good candidates for being the maximal variable.
For each variable z;, 1 < ¢ < n, we compute the set D; of degrees 8 € N s.t.
:cf appears as exponent of some term in U and we have z; € Y if and only if
D; contains only consecutive elements (Corollary 6). If Y = (), no variable can
be the maximal one, making U complete, so U is not complete for any variables’
ordering. Suppose instead ) # Y = {z;,,...,z;,} C X; we pick z;, € Y as maximal
variable. We reorder the elements of U, increasingly w.r.t. their j;-degree and if
t,t' € U have the same ji-degree and ¢ | ¢/, we set ¢t < t’; then we construct

the ji-bars ngl), - Bl(ij(lj)l) under the terms. Now we look for candidate terms for
having condition 2 of Corollary 6 satisﬁ(ﬁl, seeking in the Bar Code the potential
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involutive divisors of all tx;, , for ¢ over ngl), e Bff(lj)l)_l and keeping track of
the variables they would need to have as multiplicative to really be the involutive
divisors. If some of these terms has no candidate involutive divisors, then z;, is
not a good candidate for being the maximal variable, so we come back to Y and
we start again with a new one. Otherwise, if for 1 < j < u(j;) there is only one
term over Bgfh), all the bars are unitary (unitary case): each variables’ ordering
s.t. x;, is the maximal one makes U complete. If we are not in the unitary case,
we have to choose the next variable and continue drawing the Bar Code. To get
the candidates for being the next variable, we look for candidates from each j;-bar
and we intersect the results, coming back and repeating the whole procedure with
a new maximal variable if that intersection is empty. We choose then some zj,

among the variables in the intersection, and for each 1 < j < pu(j1), we order the

terms over Bg.] 1) exactly as done for constructing the ji-bars and we draw all the
jo-bars. We look for candidate involutive divisors when z;, is not multiplicative,
separately for each j;-bar. Moreover, we check whether the choice of x;, is suitable
to the candidates found in the previous step, removing the candidates such that
x;, is not suitable for them. If for some t its candidate list is empty we have to
revoke the choice of z;, and come back with another candidate. If the procedure
gives a positive outcome, then a new variable has been chosen and we continue this
way until either all variables have been placed (positive outcome), or the unitary
case is reached (positive outcome), or continue revocations of choices lead to failure
(negative outcome).
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Visual Data Explorer

Chase Tisagh

Dynamical systems modeling often produces large sets of (multivariate) data,
so modern computer algebra systems have a good visualization tools. Data visu-
alization plays an important role in data analysis - visual inspection can help
to reveal patterns that would be computationally rather difficult to reveal. The
problem becomes especially involved when one deals with multivariate data. Un-
fortunately, not all computer algebra systems have good interactivity tools, and
analyzing structures algorithmically is not easy. When we encountered this prob-
lem, it was decided to make a system for interactive exploration of multivariate
data.

The system is designed to allow the user to find relations between two pro-
jections of a large multivariate dataset. Two selected variables are displayed on a
scatter plot (left plot) with another two selected variables displayed on another
scatter plot (right). The system can be scaled horizontally to produce as many
plots as required from the same initial dataset. Points can then be selected on any
plot and corresponding points will be selected automatically on the other plots.
Figure 1 gives an example of such visualization and selection. Selected cases can
be saved into a file for further analysis.

This system was initially developed using Microsoft Visual Studio IDE with
Python and some of its supporting libraries designed for data analysis and visu-
alization. Later, the system was migrated to Jupyter Notebooks in order to fully
utilize the power of PyViz libraries specifically developed for this application. The
main libraries imported were: Pandas; an open-source Python library designed for
data science applications, and Holoviews with Bokeh on the backend; a Python
library designed specifically for interactive data visualization using web browsers
through JavaScript. Also Tkinter; to create a graphical user interface and accept
user input, and NumPy; to effectively and efficiently perform mathematical oper-
ations if needed.

Author thanks for support Dr. C. V. Rao, Dean of Students, St. George’s

University, True Blue, Grenada, W. I. and The Windward Islands Research and
Education Foundation, True Blue, Grenada, W. I.
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FIGURE 1. Left: One curve observed in the (U, V') projection is

selected. Right: corresponding projection in another set of coor-
dinates.
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Developing a Wolfram Demonstrations Project
for bifurcation diagrams of nonlinear ODE

Daria Chemkaeva and Alexandr Flegontov

Abstract. The study considers creating a project using computing system
Wolfram Mathematica 11.3 for some classes of nonlinear boundary value prob-
lems (BVP) including a second-order autonomous ordinary differential equa-
tion with homogeneous boundary conditions. Here is studied a general case
applying to polynomial-like nonlinearities. Developing a Wolfram Demonstra-
tions Project (WDP) for this problem will accelerate experiments and decrease
computational time because of no need of sequential execution of algorithm.

Introduction

We study the interconnection of bifurcation parameter and positive roots of the
nonlinear two-point boundary value problem:

Yoo T A (y(2)) =0, z€(-1;1), (1)

y(=1) =y(1) = 0. (2)

Assume f = f(y) so second order ODE is autonomous, where parameter A > 0.
In this case, the bifurcation arises when the number of solutions of the differential
equation changes as the parameter A changes. Assume also that f = f(y) is a
polynomial of odd degree. The problem (1)—(2) describes many physical processes,
for example, belongs to the problems of combustion of gases, population dynamics
and reaction-diffusion models.

Section 1 is technical and contains useful supplement of BVP and bifurcation
curve. Section 2 describes the capabilities of system Wolfram Mathematica 11.3
in creating demonstration projects. Section 3 is the main part of the study where
the programming algorithm is described.

38



2 Daria Chemkaeva and Alexandr Flegontov

1. Nonlinearity as a polynomial of odd degree

In previous study [1| we found that bifurcation curve can be written in the form:

M= %l/ TT® 2’ ¥

where F(y) = /f(t) dt and F'(a) > F(t).
0

The turning points of (3) are bifurcation points. The plot of this function is called
bifurcation diagram [2|, implying an image of change in the possible dynamic
modes of the system with a change in the value of bifurcation parameter A > 0.
We also assumed that function f(y) is a polynomial of odd degree, and conse-
quently can change the sign:

fy) =y —a1)(y—a2)(y —a3z)..(y — azn—2)(azn—1 — y), (4)

where 0 < a1 < ag < ... < agp—2 < ag,—1 — isolated zeros of function f(y), i. e.
f(a;) =0, so the problem (1)—(2) has trivial solutions:

Y = Q, 221,2,,271)—1 (5)

Function (4) has odd number of zeros and is negative on (ai,as), then it is
positive on (ag, as). Therefore, the function has n pairs of humps, where f(y) > 0
on (az,—2),azn—1) and f(y) <0 on (azn-3,azn—2).

BVP (1)-(2) with f(y) in form (4) has A; (¢ = 0...n) bifurcation parameters such
that for A\ < Ag there is one solution to the problem, for A = \g — exactly two
solutions, for \g < A < A1 — three solutions and so on. Such parameters will only
be found in the intervals, where f(y) > 0. The maximum number of positive solu-
tions always depends on the degree of the polynomial and equals n [3].
Generalization of this problem leaded us to development of special control in Wol-
fram Mathematica language to have an interactive tool for studying the intercon-
nection between the number of roots of f(y), number of positive solutions and
bifurcation parameters.

2. Wolfram Demonstrations Project

The Wolfram Demonstrations Project (WDP) is an open-source collection of com-
pact interactive programs called Demonstrations, which are meant to visually and
interactively represent ideas from a range of fields. It is hosted by Wolfram Re-
search, whose stated goal is to bring computational exploration to the widest
possible audience.

All demonstrations run freely on any standard Windows, Mac or Linux computer
and there is no need to have Mathematica pre-installed. To interact with any
Demonstration user can work with free Wolfram CDF Player right in web browser.
If the Mathematica is installed, any source code can be downloaded, operated and
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modified [4]. The Wolfram Demonstrations Project community has a huge vari-
ety of interactive visualizations including mathematics, physics, computer science,
business and even creative arts topics.

WDP consists of a title, Manipulate code (including initialization) which repre-
sents an interactive part of a demonstration, caption and thumbnail which describe
a project.

3. Developing a Manipulate code

The programming module was developed using a single command Manipulate
which output is an interactive object containing one or more controls that can be
used to vary the value of parameter list. The output of Manipulate is very much
like a small widget: it is not just a static result, it is a running program which can
be interacted with.

The interactive part of Manipulate command is a set of control elements (sliders)
for:

1. Odd number of roots n (n =5 by default);
2. Roots of polynomial (4) a;. Number of active sliders for roots depends on n.
Changing the value of n leads to activation / deactivation of bottom sliders

(Fig. 1).

odd number of roots ap, odd number of roots ap

n I 5 n I 3

3 = S |—.

roots of polynomial:

an I 1 :otslof polynomial: 1
a2 I - az I 2
az | 4 N— s
a4 | 5 . .
as I 7 g 7
ae o a5 0
a7 e ar 0
ag o ag 0
ag o ag 4]
(a) n=>5 (b) n=3

FIGURE 1. Slider controls for input parameters

The evaluation part of Manipulate control consists of following steps (Fig.
2-3):
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1. Initialize function (3) of numeric parameter a;

2. Input number of roots of polynomial (4) and exact values of roots which are
positive numbers with the step 0.1;

3. Sort roots in ascending order and find a root with maximal value (it helps to
organize plot axis and grid lines);

4. Create a polynomial function (4);

y
5. Create an integral function F(y) = /f(t) dt;
0

6. Find the turning points of (3) using N Minimize;

7. Get the array of turning points a and array of A(a) using Table;

8. Plot bifurcation curve (3) in coordinate system (a,\) with an array of A(a)
as lines using Plot command;

9. In Epilog parameter of Plot register roots of polynomial a; (black points),
turning points a (red points) and bifurcation parameters A (ticks on A-axis).

odd number of roots an

n I 3
3 =+ &=z = bifurcation curve

roots of polynomial: 49843 | SNl
a1 I 1

az —f 2

az I 4

a4 5

ac 7

ag o

ar (4]

ag o

ag 0 * + " " =

FIGURE 2. Manipulation Control (sample 1)

Conclusion

With the help of interactive Wolfram Demonstrations Project is obvious that prob-
lem (1)—(2), where f(y) — polynomial of odd degree in form (4) has exactly \;
(¢ = 0...n) bifurcation parameters and the maximum number of positive solutions
always depends on the degree of the polynomial and equals A,,. With the help of
Wolfram interactive control we have the tool for further analysis of behavior and
interconnection between the number of roots of f(y), number of positive solutions
of BVP and bifurcation parameters.
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odd number of roots an,

n I 5
roots of polynomial: pifurcation curve
a1 I 1 !
az I 2
az | 71

7.1 - 2| [z]| (=

HEEE S | g 7

ay | 4

4 =+ =]z =
ag ] 5.2

4 & & 4 &
1 2 32503 4 52 8751

ag

5.2 =+ [=]z=] =
as ] J
ar 0 1 1
0
0

ag

FIGURE 3. Manipulation Control (sample 2)
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A Numerical Roadmap Algorithm for Smooth Bounded
Real Algebraic Surface

Changbo Chen, Wenyuan Wu, Yong Feng

Abstract. For a smooth bounded real algebraic surface in three-dimensional
space, a roadmap of it is a one-dimensional semi-algebraic subset of the surface
whose intersection with each connected component of the surface is nonempty
and semi-algebraically connected. In this paper, we introduce the notion of a
numerical roadmap of a surface, which is a set of polygonal chains such that
there is a bijective map between the chains and the connected components of a
given roadmap of the surface. Moreover, the chains are e-close to the connected
components. We present an algorithm to compute such a numerical roadmap
through constructing a topological graph. The topological graph also enables
us to compute a more intrinsic connectivity graph of the roadmap, which
is important for applications such as finding a connected path between two
points on the surface, as well as grouping witness points of the surface into
different connected components.

Introduction

Roadmap was introduced by Canny [6] in 1987 for solving robot motion planning
problems. Since then, the initial roadmap algorithm has been improved by himself
and many others [17, 14, 11, 20|. For a polynomial f € R[X1,..., X,,] of degree d,
Basu et al. [3| recently proposed a symbolic roadmap algorithm with a complexity
of d°("V™) based on the earlier work of Safey el Din and Schost [10].

The problem of deciding whether two points belong to the same connected
component of a semi-algebraic set is a fundamental problem in real algebraic ge-
ometry. Such problems can be solved by computing cylindrical algebraic decom-
positions (CAD) [9, 21|, Today, the implementations of CAD are widely avail-
able thanks to different softwares QEPCAD, Mathematica, REDLOG, SyNRAC,
RegularChains. The complexity for computing CAD is double exponential in the
number of variables. In contrast, the roadmap based algorithms have a single expo-
nential complexity and thus provides a theoretically more powerful tool for solving
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the connectivity problems in semi-algebraic geometry, such as determining if two
points in a semi-algebraic set are connected, or counting the connected compo-
nents of a semi-algebraic set. However, to the best of our knowledge, there have
been no exact implementations of the roadmap algorithms.

Today, many problems in computational real algebraic geometry can be ad-
dressed in a different way by means of powerful tools from numerical algebraic
geometry [22, 13|, such as computing witness points for connected components of
real varieties [12, 24, 23|. Despite some attempts [15, 16] for numerically computing
roadmaps, the notion of numerical roadmap has not been rigorously defined until
now. And there are still no complete numerical implementations of the roadmap
algorithms.

It is natural to develop a numerical roadmap algorithm since the roadmap
as a one-dimensional semi-algebraic set can be approximated by polygonal chains
based on numerical continuation techniques. The difficulty for developing such an
algorithm would be to guarantee there is a one-to-one correspondence between
the connected components of the roadmap and the connected components of its
polygonal chains approximation. Indeed, to achieve this, from a numerical point
of view, one has to overcome some obstacles, such as avoiding curve jumping [5,
4,19, 25, 24, 7| and handling singularities [1, 18, §|.

In this work, for a given smooth bounded real algebraic surface, we provide a
numerical version of the classical roadmap algorithm introduced by Canny [6, 2|.
We introduce the concept of a numerical roadmap and propose an algorithm to
generate it through constructing some graphs joining the silhouette of the surface
and slice curves passing through the critical points of a projection map on the
silhouette. The slice curves may have singularities, which is handled based on a
technique for tracing singular planar curves |[7].

1. Main results

Throughout this paper, let f € R[X, X2, X3] and Zr(f) (or simply Z if no confu-
sion arises) be its zero set in R?. We assume:

(A1) Zgr(f) is nonempty! and bounded.

(Ay) f attains full rank at any point of Zg(f).

Thus, Zr(f) is a smooth bounded surface in R3. In addition, without lost of gen-
erality, we enforce the assumption (As): the critical set of 72 is a manifold, holds.

Definition 1. A one-dimensional semi-algebraic subset RM of Z is called a roadmap
of 7 if the following two properties are satisfied:

(Ry) The intersection of Z with each semi-algebraically connected component of
RM s nonempty and semi-algebraically connected.

(Ry) For every ¢ € R, every semi-algebraically connected component of Z. has
nonempty intersection with RM .

LIf Zg (f) is empty, its roadmap will be empty. We make this assumption for simplicity.
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Definition 2. The critical set X(m12|Z) is called the silhouette of Z. For any ¢ € R,
if Ze # 0 and dim(Z.) < 1, it is called a slice curve of Z.

Let SI be the silhouette of Z. By Sard’s Theorem, there are only finitely
many critical values of X7 : ST — R. Let ¢; < --- < ¢, be all the X;-critical values
of SI, where ¢; and ¢, are respectively the minimal and maximal value of X; on
Z.Let SLy := U]y Z., and RMy := ST U SLy.

We call each hyperplane X1 =¢;, i = 2,...,r — 1 a distinguished hyperplane
and each point in U;:QlZci N SI a distinguished point.

Theorem 1 ( [6, 2|). The set RMy is a roadmap of Z.

Definition 3. Given a roadmap RM of Zr(f) and a given precision ¢ € R. A set
S of polygonal chains is called a numerical roadmap of Zr(f) (e-close to RM ) if
there is a bijection map m between S and the connected components of RM such
that the Hausdorff distance dg(P,m(P)) < € holds for each P € S.

Note that if we make a small € perturbation to a surface Z, the number of
connected components of Z may change if the Hausdorff distance between two
components is less than e. Thus, in the rest of this paper, we would assume that
the Hausdorff distance between any two connected components of a surface is
much larger than e. Moreover, we assume that the distance between any X;-
critical points of the silhouette is much larger than €. We name the two numerical
assumptions as (Ay).

The main idea is to use the distinguished points as well as the critical points
on the hyperplane X; = ¢; and X; = ¢,, which are the X;-global extremum points
on the surface, as seed points to generate some neighbor points. These neighbor
points will be used as initial points for curve tracing. The distinguished points,
critical points on the hyperplane X; = ¢; and X; = ¢, and neighbor points will be
the vertices of the graph and they are connected by edges representing the curve
segments between them. We call this graph a topological graph of the roadmap
RMj,. We can refine this graph to obtain an approximate graph of RM, and build
the connectivity graph of RM,.

Theorem 2. Under Assumptions (A1),...,(A4), one can control errors of staring
points and prediction-correction in curve tracing to compute an approximate graph
of RMy, whose zero set is a numerical roadmap e-close to the roadmap RMy of Z.

2. Examples
Example 1. Consider the torus surface defined by
f= (x2 +y? 4+ 22 —i—3)2 — 1622 — 169>

Example 2. The Chub’s surface defined by f = x* +y* 4+ 2* —22 — 92 — 22+ 0.5 is
a singular surface. We replaces the constant coefficient of f by 0.4 (resp. 0.6) and
the perturbed polynomials as Chuby (resp. Chubs).
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The computed topological graph of the torus.

X3 0+

Zero set of the topological graph of the torus. The connectivity graph of the

torus.
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Problems around the Newton-Puiseux algorithm
and its generalization to nonzero characteristic

Alexander L. Chistov

Abstract. We discuss problems and recent results related to the Newton-
Puiseux algorithm and its generalization for nonzero characteristic obtained
by the author earlier. In particular we suggest explicit expansions of algebraic
functions in formal power series in nonzero characteristic and thereby obtain
an interesting generalization of the Taylor theorem to nonzero characteristic
for these functions.

In paper [3] we developed a new method and proved the fundamental result
in theory of computation with parameters. After that we demonstrate the strength
of this method in [4], [5], [6] (the third concluding part of [4], [5] is to appear) and
solved there long standing difficult problems.

It is interesting now to apply the methods of [3], [4] to the problem of con-
structing Newton-Puiseux expansions of the roots of polynomials with parametric
coefficients. Of course here one should work with commutative separable algebras
over the ground field in place of its finite field extensions. It is only one of the
difficulties. To obtain good bounds for the complexity one can apply the results of
[8]. We hope to consider this problem in detail in one of our next papers.

In [7] we generalized the Newton-Puiseux algorithm to the case of a nonzero
characteristic ground field k. There we obtained a canonical algorithm for factoring
polynomials over the maximal weakly ramified extension of the field k((X)). Note
that so far there has been a general opinion that such an algorithm is impossible
or if it exists it must be very complicated. So our result from |7] can be considered
as a true discovery. Still there is a problem to estimate the sizes of coefficient from
finite extensions of the field k£ involved in this natural construction similarly to
[8] (there the field k has zero characteristic). But now it seems there is no direct
analog of the results from [8] sufficient to get the required bounds for sizes of
coefficients. We need to return to a more classical approach and estimates the
denominators of these coefficients. More precisely, we would like to formulate the
following hypothesis.
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Let k = Fpm (t1,...,t;) where t1,...,t; are algebraically independent over the
finite field F,m of p™ elements, p = char(k), m > 1 is an integer. Denote by k;
the separable closure of the field k. Let f € k[X,Y] be a separable polynomial
with respect to Y (i.e., the degree degy f = n > 1 and the discriminant of f
with respect to Y is nonzero) with the leading coefficient lcy f = f,,. Assume that
f €Fpmlt,... .1, X, Y] and the degrees degy y f < d, deg,, , f < d; for some
d,dy > 2. Let g € ks((X))[Y] be an irreducible (in the last ring) factor of the poly-
nomial f. Then by this hypothesis there are a polynomial 0 # A € Fym|[t1,..., 1]
of degree deg; ;A = d1d°® and a polynomial g1 = g1(ti,...,t, X, Y) €
Fpm[t1,...,4][[X]][Y] such that

g=g1(ts,...,t1, X/\Y).

One can even specify this hypothesis. Namely, let y1,...y, € k((X)) be all
the the pairwise distinct roots of the polynomial f (here k((X)) is an algebraic
closure of the field £((X))). Put F' = fﬁ’(n_l) [Ticizj<n(Z —yi+y;) where Z is a
new variable. So the polynomial F' € Fym[t1,...,t, X, Z]. Let F' = Z” F, ;X7
where all the coefficients F; j € Fpm|[t1,...,%]. Let V' be the set of all vertices of
the Newton broken line of the polynomial F' considered as an element of k[[X]][Z].
Put \y = H(i’ fev F; ;. Then one can suppose additionally in the formulated
hypothesis that A divides A for some integer N = d°M.

This hypothesis (if it is true) is a key to obtain good bounds for sizes of
coefficients from k; in the construction from [7]|. To prove this hypothesis we need
to analyze carefully the algorithm from [7] (at present we don’t see any other way).

Notice also that one can generalize the expansions introduced in [7] to obtain
the canonical algorithm for factoring polynomials in the ring k4 ((X))[Y] in nonzero
characteristic (k is arbitrary in what follows). Here in some sense one can combine
the expansions from [1], [2] and [7]. Of course the algorithm for factoring polyno-
mials in the ring k4 ((X))[Y] can be deduced from the algorithm of |7] immediately
without introducing these new expansions but it will not be canonical.

Even more, one can describe further generalization of these expansions and
obtain a canonical algorithm for factoring polynomials in the ring k((X))[Y] in
nonzero characteristic. But here one should work with commutative separable
algebras over the ground field in place of its finite field extensions, cf. above. This
last generalization will be useful for explicit algorithms in theory of algebraic curves
in nonzero characteristic and allows to obtain the results similar the ones from [9],
[10] (in [9] a more general situation is considered and some inaccuracies from [10]
are corrected). For example, using these results one can compute the genus of a
curve. Notice also that in the case [ = 0, i.e., if the ground field is finite all these
results follow directly from [11] (in the English translation of the last paper two
pages 1913, 1914 are given in the wrong order; besides this we have found in the
original paper and its translation a small non-essential inaccuracy in the statement
of lemma 5).
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One more interesting problem related to this subject is to get an efficient
algorithm for factoring polynomials over the rings of multi-variable formal power
series in any characteristic. Say, to factor a polynomial ¢ € k[[X1, X»]][Y] in this
ring.

At the end of this extended abstract we would like to describe an explicit
analog of the Taylor series for algebraic function in nonzero characteristic. Let k
be an arbitrary field of characteristic p > 0. Put K = k((X)). Let f € k[[X]][Y] be
a separable polynomial with respect to Y with the degree degy- f = n > 1. Consider
the separable algebra A = K[Y]/(f). Put y = Y mod f € A. Let Z, W be new
variables. For every ¢ € k[[X]] the element o(X+72) € k[[X, Z]] C K[[Z]] is defined
in the natural way. So f(X + Z, W) € K|[[Z]][W]. Put B = K[[Z]][W]/(f(X +
Z,W)) and w = W mod f(X + Z,W) € B. So not formally we have w = y(X +
Z) = ylx.=x+z. Now we would like to find an embedding of KJ[[Z]]-algebras
K[[Z]|[w] — K[y][[Z]] such that w +— 37,5 qw; Z*, where all w; € K[y] = A and
wo = y, i.e. to find an explicit representation w =}, w; Z* € Kly|[[Z]]. Such
a representation exists by the inverse function theorem for formal power series
over K since we have fy,(X,y) is invertible in A due to the separability of the
polynomial f with respect to Y. The inverse function theorem is valid in nonzero
characteristic and it is deduced (similarly to the case of zero characteristic) from
the implicit function theorem for formal power series over K[y] in two variables
Z,T with a nonzero invertible Jacobian, namely considering the mapping (Z,T") —
(Z, f(X+Z,T+vy)). So by definition put D;y = w; for every i > 0. Now for every
z € Ky one can define the elements D,z € K[z] C K|y in the similar way. Hence

D; are k-linear operators on K[y]. We have D;(2122) = > _oc,c; Dm(21)Di—m(22)
and D;(D;(z)) = (itj)DiJrj(z) for all integers 4,7 > 0 and 21, 22, 2 € K|y]. Notice

also that if the initial polynomial f € k[X,Y] then all D,y € k(X)[y] (it is also
the consequence of the inverse function theorem).

Of course, in the case of zero characteristic we have D;y = %% by the

Taylor theorem. In nonzero characteristic if y € ks((X)) and y = >~ a; X7, all
aj € kg (in this case degy f = 1), then one can prove that Dy = Y- . a; () x7—.

Let us return to the case of an arbitrary polynomial f with degy f > 1.
At present we would like to get general formulas for D;(z) for z € A in nonzero
characteristic. Strangely enough we could not find them in literature. Let s > 0 be
an integer. We have K[y] = K[yP"] since f is separable with respect to Y. One can
represent fP° = fo(X?",YP") where f, € k[[X]][Y] is a separable polynomial with
respect to Y. Denote by d, the differentiation of the ring k((X?"))[Y?"] over k such
that d,(X?") = 1. Such a differentiation exists and unique since the polynomial
fs is separable with respect to Y. Speaking not quite formally it coincides with
d/dXP" on the ring kb[‘[Xp ]J Let z € k((X))[y]. We represent z = ZKKPS 2 X"
where all z; € k(X7 ))[y? |. By definition put ds(2) = > gc;ps 0s(2:) X" € A.

Here we would like to note that this definition implies that for all z1,20 € A we
+1 s+1

have 84(2120 ) = 04(21)28
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Now we are able to give the required formula for D;(z) for z € A. Namely
let us represent i = g +21p + ... +4,p" where all i;, 0 < j < r, are integers such
that 0 <¢; < p and %, # 0. Then we have

1 .y .

Di(z) = méf;’é? - 0,7 (2), (1)
where 5;j is the i;-th power of the operator d; (of course (5? = id is the identity
operator) for every j.

One can prove here the following fact. Let f = fi fo where f1, fo € ks[[X]][Y],
degy f1 = n1 > 1. Put A1 = ks((X))[Y]/(f1) and y1 = Y mod f; € A;. For
all zy € A; and integers i,s > 0 the elements 0s(z1), D;(21) € A; are defined
similarly to d(z), D;(z) € A (see above; with kg, f; in place of k, ). We have an
epimorphism of ks((X))-algebras ¢ : ks ®, A — A1, y = y1. Now we claim that
Y(0s(2)) = 0s(¥(2)), ¥(D;i(2)) = D;(1(z)) for every z € A and for all s,i > 0.

The formula (1) has a theoretical importance. In practice to compute and
estimate D;y it is better to proceed as follows. Assume additionally that f €
k[X,Y]. One finds the least integer s such that p® > i, for all 0 < j < n one
represents y? J = > 0<men bimy™ where all b, € k(X) and solving a linear
system over the field k(X) finds the relation y = > 5, _, a;yP"7 where all a; €

k(X). After that one represents a; = ¢;/c?” where all ¢j, ¢ € k[X] and have the
least possible degrees. Now y = > ., ¢;YPJ /P and Dy = >o<j<n Diles) -
YP'7 /P All D;(c;) are easily computed since we know D;(X™), see above.

At present we have an immediate application to the considered above prob-
lems. Namely, assume that the polynomial f € k[X,Y] hasaroot Y = y; € k,[[X]].
Put fi = Y—y;. So f1 divides f. Let us define w; similarly to w (with kg, f1 in place
of k, f). Then one can easily see that w|x—o = y1|x.=z. Hence (w1|x=0)|z.=x =
y1. Put D;y1(0) = D;y1|x=0 for every i. Hence y; = Z@O D;y1(0)X*. One can
compute D;y as described above and after that find the minimal polynomial
O, € k[X,Z] of the element D;y over k(X) (we assume that X does not di-
vide ®;). Also one can obtain good upper bounds for the sizes of coefficients from
k of this polynomial ®;. Since 1(D;y) = D;y; the element D;y; is a root of the
polynomial ®;. Hence D;y;(0) is a root of the polynomial ®;(0,Y"). So one can get
the required efficient upper bound for the size of D;y;(0).

Finally we would like to note that now in the case of zero characteristic
applying the inverse function theorem (similarly to how it was above in nonzero
characteristic) we can obtain the results of [8] by another method. This is also of
great interest.
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Constructive tasks in distance Olympiads

Sergei Pozdniakov and Anton Chukhnov

Abstract. Constructive problems appear in every branch of mathematics.
Constructive tasks are very important as they give us the direct way of stim-
ulation of productive activity. This work is devoted to the position of con-
tructive tasks in distance Olympiads on mathemathics and informatics. Also
the tasks of this kind could be used for monitoring of students activity inside
the learning process.

1. Constructive tasks

There are some general types of constructive tasks in mathematics. First of all
there are explicit constructive tasks where the formulation of the task directly
suggests to build a certain constrution.

Also the constructive task could hide behind the words “Does it exist...”.
The tasks of this type look more interesting but there is a rather big room for
disappointment of schoolchildren losing hours for attempts to prove the negative
answer instead of creating an example for the positive answer which sometines
could be very simple.

Also there are “estimate plus example” tasks which require not only build-
ing the construction which is optimal for a certain parameter, but a proof of its
optimality as well.

Building a construction is a productive activity. It could be more interesting
for students than submitting numbers in formulas and more developing for them
as well.

2. Constructive tasks in Olympiads

In the modern circumstances many Olympiads transformed some of their stages
into the distant form. Within this form the organizerz face the choice how the
participants should submit their solutions. The most common and the most simple
way is to let the students just submit the answers. Unfortunately, sometimes it
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is easy to guess the correct answer without doing all the necessary mental work
needed to solve the task completely.

The second possible way is to have the full solution texts required. The mi-
nuses of this way are the low typewriting speed of some participants and troubles
with submitting plots and figures.

Another possible way, which allows us to avoid a roulette from the one hand,
and doesn’t force the participants to type huge amount of text from another hand
is using of constructive tasks. Of course, for each task or a type of task we have
to develop a framework, which we call a “manipulator” and it requires some more
activity than just checking a number answer, but it is the price for making the
Olympiad more interesting and its results more representative. From the other
hand, constructive task solutions can be verified automatically which helps us to
reduce a human work comparing with the second way.

3. Constructive tasks within the framework of Olympiad in Discrete
Mathematics and Theoretical Informatics

Within the framework of Olympiad in Discrete Mathematics and Theoretical Infor-
matics we generally use six types of constructive tasks. Each of them is supported
by its own manipulator.

We have logical schemes, Turing machines, finite state machines, regular ex-
pressions and graph manipulators and also the “Tarski World” manipulator which
supports predicata calculus tasks.

For example, graph task may be formulated as “Find the minimal graph
satisfying the certain conditions”. Correctness of the constructed graph is verified
automatically. The student can gain additional points for proving the minimality
in the text form.

4. Using constructive tasks for non-invasive monitoring

While teaching students in the University you often ask yourself a question “how
can i fairly access the students knowledges and undestanding”. Exam is the neces-
sary but not the best way just because in the stress situation some students show
more than they can, and some other very much less. We may say that sometimes
we check not the level of knowledge, but the ability to pass en exam.

This is the reason why we should develop non-invasive tools of assessment the
students activity. Non-invasive means that while introducing this tools we don’t
force the students to prepare to pass the certain tests instead of learning the course
as a whole.

This goal can be reached if we do not include our tools in the final assessment.
So the only motivation for the student to solve those additional tasks would be
the ability to check oneself and to improve ones knowledge.
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Relativistic Ovsyannikov vortex

A.P. Chupakhin and A.A. Yanchenko

Abstract. An exact solution of the Euler equations governing the flow of a
compressible fluid in relativistic hydrodynamics is found and studied. It is a
relativistic analogue of the Ovsyannikov vortex (special vortex) investigated
earlier for classical gas dynamics. Solutions are partially invariant of Defect 1
and Rank 2 with respect to the rotation group. A theorem on the representa-
tion of the factor-system in the form of a union of a non-invariant subsystem
for the function determining the deviation of the velocity vector from the
meridian, and invariant subsystem for determination of thermodynamic pa-
rameters, the Lorentz factor and the radial velocity component is proved.
Compatibility conditions for the overdetermined non-invariant subsystem are
obtained.

Introduction

Equation of relativistic hydrodynamics governing the flow of a compressible fluid
(gas dynamics) have the form [1]

(Lp)e + V- (Tptd) =0,
(I pwit); + V - (I pwil x @) + Vp = 0, (1)
(T2pw — p) + V - (I? pwi) = 0.

In (1) vector @ — gas velocity in laboratory coordinate system, p, p — pressure
and density, w = 1+ -Z3p/p — enthalpy, I' = (1 - |i|?)~1/? — Lorentz factor
are function of independent variables — the time ¢ and the spatial coordinates
7 = (z',22,2%). A coordinate system is chosen such that the speed of light ¢ = 1
and for the velocity modulus |@] = (37_, wi*)1/2 inequality |i| < 1 is satisfied.
Lemma 1. The Euler equations of compressible fluid for relativistic hydrody-

namics can be written in the form

bDﬁ—Fptﬁ—F Vp: O,

Da + adivu = 0, (2)

aDd = Pt¢-
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In (2) a=Tp, b=T2pw,d=0b/a =Tw, D=09; +1i-V — total derivative.
We introduce spherical coordinates (r,0,¢), (U, V,W) and new coordinates
for tangent component i, = (V, W) of the velocity vector:
V =Hcosw, W = Hsinw, (3)

such that H = VV24+W?2, w = arctan W/V. Special vortex is a solution of
equations (2) in which a special dependence of the functions on the independent
variables is realized, namely:

U=U(rt), ' =0(rt), H=H(rt),
p=p(rt), p=p(rt), w=uw(ri), (4)
w=uw(t,r,0,p).
From the general theory of group analysis of differential equations [3], after sub-
stitution of the representation (4) in (2), we obtain composition of a factor-system

in the form of a union of an overdetermined system of differential equations for
function w and a system of equations for invariant functions U, T, H, p, p, w.

Special vortex equations for relativistic gas dynamics

Lemma 2. Special vortex equations for relativistic gas dynamics are represented
as a union of invariant subsystem

1
ad(DoU — ;H2) +pU +pr =0,

DoH + L H + poH = 0, (5)
T
CLD()d = Dt,

where Doy = 0; + U0, — invariant part of the total derivative, and overdetermined
subsystem for function w:

k sin 0D ow + sin 6 cos wwp + sin ww,, + cosfsinw = 0,

(6)

sin 0 sin wwy — cos ww,, = hsin @ + cos 0 cosw,

where
k=r/H, h=k(a "Doa+r>rU),). (7)
It is remarkable that (6) and (7) coincide exactly with the corresponding equations
for classical gas dynamics [2, 4|. But function h is different, it is related to other
physical quantities.
Lemma 3. (Ovsyannikov compatibility condition) Compatibility condition of
overdetermined system (6) has the form

kDoh = h% + 1. (8)

Equations (8) complement invariant subsystem (5). Thus, all mathematical results
proved for the special vortex in classical gas dynamics [2, 4] are carried over to
special vortex in relativistic gas dynamics.
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Stationary special vortex for relativistic gas dynamics

Consider a stationary special vortex, i.e. solution which is partially invariant
with respect to the group (0, SO(3)). In representation (4) and in equations of
Lemma 2, it is necessary to remove the dependence on time, then Dy = Ud%.
Consider monatomic gas with v =5/3.
Lemma 4. For stationary special vortex for relativistic gas dynamics invariant
subsystem is reduced to ordinary implicit differential equation
2

p
1+ h?

F(R,h,p;mg,sg) = q3/2 — R2p<3mo + 50 >q + 3m(2)R4p2q1/2 — ngGp?’ =0,

(9)
where p = dh/dR; sg > 0, 0 < mg < 1 — constants characterizing physics of the
problem, R > 1 — normalized distance, ¢ = q(R, h,p) has the form

(R, h,p) = R*(R* — 1)p* — (1 + h*)%. (10)

Thus, the determination of the special vortex for relativistic gas dynamics reduces
to solving equation (9) and overdetermined system (6). This system is integrated
in finite form in [2], its solution w is given by an implicit function. Geometric
interpretation and domain investigation are given in [5].

Equation (9) belongs to a class of equations that are unresolved with respect
to derivatives. Now such equations are usually called implicit differential equations.
The present state of the theory is presented in [6]. The specificity of equations of
this type is the existence of manifold of branching solutions, the presence of tra-
jectories bundle starting from singular points of different degrees of degeneracy [6].

Investigation of singular points of equation (9)

Implicit equation (9) can be resolved with respect to derivative p at all points of
R3(R, h,p), except for the points of manifold

F(R,h,p) =0, F,(R,h,p)=0. (11)

Curve (11) is called a criminant of equation (9), it is manifold of branching of
integral curves. It consists of singular points of equation (9), called regular singular
points. Folded singular points can be found from the system of equations

F(R7 hap) - 07 Fp(R7 h7p) - 07 FR(R7 h7p) +th(R7 hap) =0. (12)

Projection of the criminant curve onto plane R?(h, R) is called a discriminant
curve.

The essence of the geometric approach to study of implicit differential equa-
tions, proposed by Poincaré, is to raise the equation to a vector field

R, = Fp7 hy = pr, br = _<FR +th)’ (13)

where 7 — new parameter along integral curve. With this interpretation, the
integral curves of equation (9) are located on different sheets of surface F' = 0.
These integral curves can be projected onto the plane R?(h, R) with overlapping.

59



4 A.P. Chupakhin and A. A. Yanchenko

The investigation of the singular points of equations (9) is connected with
large computational difficulties. The solution of the system of equations (12), de-
termined by the resultants of the corresponding polynomials, can be obtained by
means of a system of symbolic and numerical computations. Even with the use of
such computing systems, the calculation can be quite long.

Numerical techniques

We will deal with F'? because it is more convenient from the computational point
of view (everywhere below by F' we mean F?).

Diseriminant curve

The discriminant curve is given by the system of equations (11) To solve this and
other similar systems, the following technique is used. Since the equations of the
system (11) are polynomials in p, we can eliminate p by constructing the resultant
of two these polynomials. Denote by ®; = F', ®, = F},. Then

Ri2(R, h) = res(®q, Do). (14)

Further, in the (R,h)-plane, we can numerically solve the algebraic equation
Ri2(R,h) = 0 for h. Thus, for given mg, sop and R, we can calculate the dis-
criminant curve.

Theorem 1 (about discriminant curve) The discriminant curve consists of one
or two components. The discriminant curve always has its “main” component, but
for small sg (sp ~ 1072 and less) an additional (“secondary”) component of the
discriminant curve appears.

Folded singular points

Folded singular points are found from the system of equations (12). Denote by
& = F, &y = F},, &3 = Fr + pF}. In order to solve this system, we construct the
following resultants

ng(R, h) = I'eS((I)l, (1)2), ng(R, h) = res(CI)l, (1)3) (15)

Intersection of curves Ry = 0 and Ry;3 = 0 gives us a set of folded singular
points. To find Ry3(R,h), it is necessary to calculate determinant of order 19
(11! = 39,916,800 terms, without zeros). After simplification, the degree of the
polynomial obtained is 60 and 108 for R and h, respectively. To find Ri3(R,h) we
calculate determinant of order 20 (15! = 1,307,674,368,000 terms, without zeros).
The degree of Ri3(R,h) is 64 for R and 170 for h.

As a result of the numerical experiment, the following statement was ob-
tained.

Theorem 2 (existence and uniqueness of folded singular points) For any values
of parameters sy and mg there is a unique folded singular point.
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Relativistic Ovsyannikov vortex 5)

Conclusion

A stationary solution of relativistic Ovsyannikov vortex is studied in detail. It is
proved that its invariant subsystem reduces to an implicit differential equation.
For this equation, the manifold of branching of solutions is investigated, and a set
of singular points is found.
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Tropical Orthogonal Linear Prevarieties

Dima Grigoriev (jointly with Nikolai Vorobjov)

We study the operation A+ of tropical orthogonalization, applied to a subset
A of a vector space (R U {oc0})", and iterations of this operation. Main results
include a criterion and an algorithm, deciding whether a tropical linear prevariety
is a tropical linear variety, formulated in terms of a duality between A+ and AL+,
We give an example of a countable family of tropical hyperplanes such that their
intersection is not a tropical prevariety. We design an auxiliary algorithm, with
singly exponential complexity, which for a given algebraic set V' C (C((t'/>)))"
and a point u € Q" decides whether or not u belongs to the tropicalization of V,
and, if it does, produces a lifting of u in V. An algorithm for the same problem
due to A. Jensen, H. Markwig, T. Markwig has a doubly exponential complexity
bound in the number of variables

Dima Grigoriev (jointly with Nikolai Vorobjov)
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Landau: language for dynamical systems with au-
tomatic differentiation

Ivan Dolgakov and Dmitry Pavlov

Abstract. Most numerical solvers used to determine parameters of dynami-
cal systems rely on first-order derivatives of the state of the system w. r. t.
the parameters. The number of parameters can be fairly large. One of the
approaches of obtaining those derivatives is the integration of the derivatives
simultaneously with the dynamical equations, which is best done with the
automatic differentiation technique.

Even though there are known some automatic differentiation tools, there is no
framework providing the solution fast and useful enough for dynamic system
modeling purposes. Landau is the Turing incomplete statically typed domain-
specific language aimed to fill this gap. The Turing incompleteness provides
an ability of sophisticated source code analysis and as a result a highly op-
timized compiled code. Among other things the language syntax supports
functions, compile-time ranged for loops, if/else branching constructions, real
variables, and arrays, ability to manually discard calculation where the auto-
matic derivatives values are expected to be negligibly small. In spite of rea-
sonable restrictions, the language is rich enough to express and differentiate
any cumbersome paper-equation with practically no effort.
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RSK bumping trees and a fast RSK algorithm

Vasilii Duzhin, Artem Kuzmin and Nikolay Vassiliev

The Robinson-Schensted-Knuth (RSK) correspondence is a bijection between
a set of permutations of integers and a set of pairs of Young tableaux of the same
shape: insertion tableaux P and recording tableaux (). The procedure of trans-
forming the input permutation into tableaux is also known as the RSK algorithm
or the RSK transformation. The RSK algorithm has many important applications
in combinatorics and representation theory.

Each number from the input permutation is being put into a certain place of
tableau P, consequently displacing other numbers when it is necessary. A bumping
route [1] is a sequence of positions in insertion tableau where bumping occures
during the RSK transformation. At the same time, tableau @) "records" the posi-
tion where the form of P has changed by putting the index of the current number
at the same position. A more detailed description of the RSK algorithm can be
found in [2].

The RSK algorithm can be easily generalized to the infinite case: the in-
put infinite sequence of numbers can be transformed into a pair of infinite Young
tableaux. Some results of numerical experiments using RSK transformation of ex-
tremely large input sequences are shown in [3]. For such experiments, the efficiency
of the algorithm becomes especially crucial.

The goal of this work is to implement a special variant of RSK which works
significantly faster than the original algorithm. The computational costs of the
RSK are mainly caused by searching a position where the next number should
be bumped in tableau P. In order to solve this problem, we consider tableau P
together with a special combinatorial object called a bumping forest which is a
union of all possible bumping routes of an insertion tableau. The Figure 1 (a)
shows an example of a Young tableau equipped with a bumping forest.

The bumping forest itself is shown in Fig. 1 (b). It can be easily seen that
it consists of connected components, which we call bumping trees. Each bumping
tree is a union of bumping routes converging to a same position where the form
of tableaux P, can be changed.

This work was supported by grant RFBR 17-01-00433.
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FIGURE 1. A Young tableau and its bumping forest

At each step of the algorithm we need to maintain the correct structure
of a bumping forest. This maintenance expenses costs us some computational
resources. On the other hand, we do not need to calculate bumping routes for
the input numbers. The numerical experiments show that the proposed algorithm
works faster than the standard RSK algorithm and the performance gain is higher
for larger permutations. Table 1 shows the calculation time of both standard and
proposed versions of RSK for different uniformly-distributed random permutations
of integers. Each value is an average elapsed time of processing 300 permutations
of the same size.

TABLE 1. The comparison between the speed of standard and
fast RSK algorithms

Permutation size

Elapsed time by stan-
dard RSK (in sec)

Elapsed time by fast
RSK (in sec)

100000 5 1
250000 22 2
500000 72 5
1000000 274 15

As we can see from the table, the proposed algorithm works &~ 18 times faster

than the standard one for the permutations of size 10°.

Note that the fast inverse RSK transformation can be implemented using the
bumping forest as well. In that case the bumping routes will be reversed.
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Calculation of High Orders of the Resonance Nor-
mal Form

Victor F. Edneral

Abstract. It is well known that the most interesting properties of ODEs sys-
tem are mainly defined by the lowest no vanished orders of the normal form.
Unfortunately, such an order can be very high.

We study integrability of the degenerated 5 parametric planar ODEs
system [1| by the normal form method [2, 3] where the resonant normal form
is calculated by the NORT program [4].

We have found six first integrals of motion of the system at different
sets of the parameters. But the last step of the study demands a calculation
of the corresponding normal form till the 27" order. Le. it needs to calculate
the truncated power series in two small variables and 4 no small parameters
until the 27¢" order. This problem does not solve yet.

In the report, we discuss the internal representation of series in the
STANDARD LISP program NORT and give estimations for a calculation of
the problem by a straight method and with the usage of lazy and modular
calculations.

The report is supported by the "RUDN University Program 5-100".
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The Gamma function and its mverse

A. C. Camargos Couto and D. J. Jeffrey

Abstract. We review some properties of the Gamma function of Euler, I'(z),
paying particular attention to the complex plane. We than define the inverse
Gamma function, ', (z), which is a multi-valued function, and therefore must
have its branches defined for all complex values. The branches are defined by
considering first the range of I, the domain of I', and then transforming to the
domain of f, the range of I'. Having delineated all branches, we then present
numerical algorithms for the evaluation of I.

1. Introduction

A recent review [1]| of the factorial or I' function noticed some interesting facts.
The asymptotic approximation known as Stirling’s formula was really due to de
Moivre, and Stirling’s own formula is actually more accurate, in some sense. The
two approximations are respectively

Inl'(z2) = 11n2w+(z—%)1nz—z+2°° B(2n)

=3 n=1 In@n-1)z""T >

where B is a Bernoulli number. This form was due to de Moivre. Stirling himself
derived

_ 1
Z—Z—ﬁ,

o (1-2'7?™)B(2n
InT(z) = 32+ ZInZ — 2 - 302 | S22

Derivations of Stirling’s formula are very popular amongst contributors to
journals such as the American Math. Monthly: about 30 variations on the deriva-
tion have been published. For many authors, the derivation of the formula is more
important than its utility. In fact we shall show it is remarkably accurate even in
the complex domain.

Another observation was that only a few papers have addressed the question
of the functional inverse of I". One of the earliest applications of inverse I" was
made by Gaston Gonnet in 1981 [2] (in the same paper that defined W). The
inverse is a new challenge for the approach to understanding multi-valued inverse
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functions in the complex plane presented in [3]. In order to visualize the branch
cuts in the real line, take I'(x) over —4 < x < 4:

The points at which the branch cuts are defined should eliminate the multi-
valued component from I' at the intervals constrained by the cutting lines. We
therefore chose the local minima and maxima of I'(x) for the location of those
points. I" is then treated as a single valued function at those intervals and labelled
with a branch index k:
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We shall describe work on evaluation on the real line and the discuss possible
extension of branches in the complex plane.
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Sketch on quaternionic Lorentz transformations

Mikhail Kharinov

Abstract. Lorentz transformations are decomposed into a linear combina-
tion of two orthogonal transformations. In this way a two-term expression of
Lorentz transformations by means of quaternions is proposed. An analytical
solution to the problem of finding eigenvectors is given. The conditions for
the existence of eigenvectors are specified. A quartet of eigenvectors that oc-
curs when rotational axis is orthogonal to velocity direction is obtained. The
accompanying relativistic velocity addition is discussed.

Introduction

W.R. Hamilton had discovered quaternions in the 19 century in order best to de-
scribe real four-dimensional spacetime R*, supplied with a cross product [v,n] of
spatial vectors v and n. The main advantage of quaternions is that they allow work-
ing with linear transformations of 4-dimensional Euclidian space without explicitly
introducing a standard orthonormal basis and matrix representation of a linear op-
erator. The use of quaternion multiplication provides concise calculations. So, the
rotation V' of a 3-dimensional space is elegantly described through multiplication
of quaternions as V{u} = bub, where: b = i cos 2 +vsin &; b = iy cos £ —vsin &;
10 is the multiplicative unity; v is the unit vector of unit length along rotational
axis, such that \/(v,v) = 1 and ¢ is the rotational angle [1].

In the quaternion space, the Lorentz transformations are expressed only
slightly more complicated than the rotation V.

1. Lorentz transformations in terms of quaternions

The Lorentz transformations £ are defined as a linear transformation of the space
of quaternions u, v that preserves the real inner product (u,v) of one conjugated
vector & = 2(v,ig) — v by another vector u: (L{u},L{v}) = (u,v). The Lorentz
transformations £ is decomposed into the two simple transformations V and L as
in [2], so that £{u} = £V L{u} or L{u} = £V L{u}. For brevity, only one option
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L{u} = VL{u} is treated, where L is the Lorentz boost. It is screw-symmetrical:
(L{u},v) = (L{v},u) for any u,v.
L{u} is expressed in quaternions as:

L{u} = aua — nusinh f=aua — unsinh 0, (1)

where a = 19 COShg + nsinhg and 0 is the rapidity, such that the velocity vector
v divided by scalar speed of light c is expressed as v/c = ntanh 6.

It is noteworthy that in [3, 4] the Lorentz boost is described by the trun-
cated formula (1). But this is achieved only due to extra dimensionality, which
complicates interpretation.

The dual expression (1) for L and simple quaternion multiplication rules |1, 5]
provide easy operation with the Lorentz transformations £ = V' L in a coordinate-
free way. It is a good exercise to obtain eigenvectors ¢ for the transformation
L =VL: L{c} = &kck, where &, are real eigenvalues and eigenvector sequence
number k starts from 0 and does not exceed 3.

2. Eigenvectors in the general case

It is trivial that the eigenvectors of the transformation £ = V' L, corresponding to
eigenvalues other than 1, are pseudo-orthogonal to themselves and to the invariant
eigenvectors that correspond to £ = 1, e.g. for £y # 1,& # 1,3 = &4 = 1 the
formulae (co, o) = (¢1,¢1) = (co,2) = (co,¢3) = (¢1,¢2) = (c1,¢3) = 0 are valid.
A concomitant fact is that the eigenvalues are pairwise mutually inverse due to
the invariance of the equation for ¢ with respect to the replacement of & by £~ 1.

For easy finding of real eigenvalues, it is convenient to present the general
equation for & as follows:

(E—C)(E—& D+ &Rz —a—B)+1] =0, (2)
where x, which must be outside the interval (0, 1), is found from the equation:

x2—xa;5+o‘;ﬁ—1:0, (3)

&o is found from the equation

—1
Sot&  _ . ()
2

and a = (cosh® + 1)(1 + cosp) > 0,8 = (v,n)?(coshf — 1)(1 — cosyp) > 0.
Concerning the latters it should be noted that in the expressions for a and 3, the
values of 6 and ¢ are assumed to be non-trivial and variative, i.e. both are not

fixed for given rotational axis v and velocity direction n.
With positive a and (5 the equation (3) for x has at least one required solution
x > 1. In this case, a pair of mutually inverse eigenvalues other than 1 is available.
For each eigenvalue £ # 1 the corresponding eigenvector is represented as ig — d,
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where (d,i9) = 0, (d,d) = 1. In turn, the components of the vector d are calculated
by the formulae:

B coshf —1&+1 & —coshd
(d,y)—(u,n) sinh 6 5_17<d7n)_W7
(@, ) = [(d,m) = (o)) e o)

3. The case of velocity, orthogonal to the rotational axis

All four eigenvectors are available in the special case of (v,n) = § = 0. In this
case, the equation for = becomes trivial:
(a:—l)(x—i—l—%)zo. (6)

In the case of x = § — 1 the equation for finding §y and & = £y 1 is expressed
by the formula:

€ —€fla—2)+1=0. (7)
As follows from the last formula (7), in order to successfully find the target values
of & and &; = &', the next condition must be satisfied:

0 0 0
’sin%’ < ‘tanhi‘ & ‘cos%‘cosh§ >1s ’tang‘ < ‘sinhi‘, (8)

where pair vertical lines denotes absolute value. In the case of x = 1, we get the
trivial equation for &: (€ — 1)2 = 0 and obtain a pair {3 = & = 1 of unit values of
¢ corresponding to a pair of invariant eigenvectors.

Explicit expressions for eigenvectors and eigenvalues are listed in the table 1,
wherein & is the solution of (7) under the condition (8).

Notation Eigenvector Eigenvalue
. i —cosh 0
co | io— (n+[n]gfeine,) e &
. i 1— h o —1
1 io— (n+ v, :fgo ) gfgiiohse So
Co io + (n — [v,n] cot £) tanh & 1
c3 v 1

TABLE 1. Eigenvector quartet in the case of (v,n) =0

Any vector u is trivially decomposed into a linear combination of the listed
eigenvectors:

u =

co(u, 1) + c1(u, Co) (u,c2) (u, c3)
(co,€1) “(ca,c2)  (escs) (9)

Note that the expansion (9) is available only if the condition (8) is fulfilled.
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Conclusion

Case (v,n) = 0 is the most important because it is this case that arises in rela-
tivistic addition of velocities, interpreted in terms of Lobachevsky theory [6, 7, §].
However, according to the authoritative opinion of John Frederick Barrett, “The
hyperbolic theory is not at all new and was described by V. Varicak shortly after
Einstein’s initial work. But it has been ignored now for over 100 years by the main-
stream theory.” Perhaps, the task of obtaining of the eigenvectors for the Lorentz
transformations represented in quaternions, and also in octonions, will be useful
for further development in this direction.

In the following papers it will be shown that the decomposition (9) of any vec-
tor into eigenvectors is not available for relativistic addition of velocities. Perhaps,
professional physicists will give a plausible interpretation for this. In any case,
the quaternion technique of working with spatial transformations seems useful for
solving modern engineering problems.
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Invariant Projectors in Wreath Product
Representations

Vladimir V. Kornyak

Abstract. An algorithm for computing the complete set of irreducible invari-
ant projectors in the space of the permutation representation of a wreath
product is described. This set provides the irreducible decomposition of the
representation. The corresponding C program constructs decompositions of
representations of high dimensions and high ranks.

1. Introduction

A description of a physical system commonly involves a space X, on which a group
of spatial symmetries G (or G(X)) acts, and a set of local states V with a group
of local symmetries F (or F(V)). X, V and F can be treated, respectively, as
the base, the typical fiber and the structure group of a fiber bundle. A state of the
whole system is a function from X to V, i.e., a section of the bundle. A natural
symmetry group that acts on the set of sections VX and preserves the structure
of the bundle is the wreath product |1, 2| of F and G

W=FIGZFYxG, (1)
The action of W on VX is defined by
(@) (f(z),9) =v(zg™") f(zg™"),

where v € VX, f € FX, g € G; the right-action convention is used for all group
actions. Importance of wreath products:

1. The universal embedding theorem (Kaloujnine-Krasner) states that any ex-
tension of group A by group B is isomorphic to a subgroup of A B, i.e., the
wreath product is a universal object containing all extensions.

2. Classification of maximal subgroups of the symmetric group (the O’Nan-Scott
theorem) essentially involves wreath products [3].

3. The wreath product S,, ¢S, is the automorphism group of the hypercubic
graph or Hamming scheme H(n,m) in coding theory [4].

4. Unitary representations of wreath products arise naturally in the study of
multipartite quantum systems.

The main step in the study of group representations is to decompose them
into irreducible components. Our algorithm [5] decomposes representations of finite
groups via computing a complete set of mutually orthogonal irreducible invariant
projectors. A similar construction in ring theory is called a complete set of primitive
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orthogonal idempotents. An arbitrary ring with such a set can be represented as
a direct sum of indecomposable rings. This is called a Peirce decomposition |6,
7]. In our case, irreducible invariant projectors are primitive idempotents of the
centralizer ring of a group representation. The dimension of this ring is called
the rank of the representation. The program in [5] proved to be very effective
in problems with low ranks. In particular, it coped with many high dimensional
representations of simple groups and their “small” extensions (which typically have
low ranks), presented in the ATLAS [8|. However, wreath products, which contain
all possible extensions, are far from simple groups and their representations have
high ranks. The approach proposed here allows us to decompose wreath product
representations with very high dimensions and ranks.

2. Centralizer Ring of Wreath Product Representation

We assume that X = {1,...,N}and V = {1,..., M}, and hence G(X) < Sy and
F (V) <Sjs. The permutation representation P of W is defined by (0, 1)-matrices
of the size MY x MY that have the form

13(75) = Oyw,v, Where w € W; u,v € VX § is the Kronecker delta.

u,v
As a representation space, we assume an M -dimensional Hilbert space H over
some abelian extension of Q being a splitting field for the local group F'. We denote
the rank of the representation P by E, and we denote the basis of the centralizer
ring by ﬁl, e ’j 7- The basis elements are solutions of the system of equations

P(o ) AP(w) = A, G eW. (2)
A more detailed analysis of (2), taking into account the structure of the wreath
product (1), allows to obtain explicit expressions for the basis elements of the

centralizer ring of P

A=) Ay @@ Agy . (3)
qerG
Here
1. Rand Aq,..., Ag are, respectively, the rank and the basis of the centralizer

ring for the M-dimensional permutation representation of the local group F'.
2. r € R" denotes a mapping from X into R = {1,...,R}.
3. rG is the G-orbit of the mapping r € RX with respect to the action defined
by rg = [rig,...,7ng| for g € G. The notation r = [ry,...,ry] is assumed.
It is easy to verify that the basis elements (3) form a complete system, i.e.,

R
E Ar(i) - \DMN7
=1

where J~ is the MN x MN all-ones matriz, 7(¥) denotes some numbering of the
orbits of G on R .
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3. Complete Set of Irreducible Orthogonal Invariant Projectors

The complete set of irreducible orthogonal invariant projectors is a subset of the
centralizer ring, specified by the conditions of idempotency and mutual orthogonal-
ity. Using the properties of the tensor (Kronecker) product [9], their consequences
and some additional technical considerations we come to the following.

Let By,..., Bk be the complete set of irreducible orthogonal projectors in
the permutation representation of the local group F. Let K = {1,..., K} and K
be the set of all mappings from X into K. The action of ¢ € G on the mapping
ke K" is defined as kg = [kig,-..,kng]. Then we have
Proposition. The irreducible orthogonal invariant projector in the permutation rep-
resentation of the wreath product takes the form

Ek:ZB&@"'@BEN’ (4)
lekG

where kG denotes the G-orbit of the mapping k on the set K.
K

The easily verifiable completeness condition Z B w) = Lps~ holds. Here K is the

i=1
number of irreducible components of the wreath product representation, 1,,~ is
the identity matrix in the representation space, k(*) denotes some numbering of

the orbits of G on K .

To compute the basis elements (3) of the centralizer ring and projectors (4),
we wrote a program in C. The input data for the program are the generators of the
spatial and local groups, and the complete set of irreducible invariant projectors
of the local group (obtained, for example, by the program described in [5]).

4. Calculation Example

We give here the calculation for the representation of the wreath product of the
rotational symmetry groups of the octahedron and icosahedron. The dimension
and rank are MY = 2176782336 and R = 122776

FIGURE 1. Icosahedron. FIGURE 2. Octahedron.
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Space Group. The space X is the icosahedron whose vertices form the set of points:
X = {1,...,12}, see Fig. 1. As a group of spatial symmetries we take the group
As, which describes the rotational (or chiral) symmetries of the icosahedron. For
the vertex numbering as in Fig. 1, the space symmetry group can be generated by
two permutations:

G(X) = {(1,7)(2,8)(3,12)(4,11)(5,10)(6,9), (2,3,4,5,6)(8,9,10,11,12)) = As.

Local Group. The local states, V = {1,...,6}, are the vertices of the octahedron.
The group of rotational symmetries of the octahedron is Sy. For the vertex num-
bering of Fig. 2, the local symmetry group has the following presentation by two
generators

F(V)=((1,3,5)(2,4,6), (1,2,4,5)) = Sy.
The six-dimensional permutation representation 6 of F(V') has rank 3, and the
basis of the centralizer ring is

0 1 1
A1 = ]167 A2 = <%z g;) N Ag = (§ }l;) s where Y = 1 0 1]. (5)
1 10

The irreducible decomposition of the representationis 6 = 14 2 ¢ 3. The complete
set of primitive orthogonal idempotents can be written in the basis (5) as follows

1 1 1 1
Blzg(Al +A2+A3),B2:§ (A1 +A2—§A3>7B3:§(A1_A2)- (6)

Program Output. The calculation was performed on PC with 3.30GHz CPU and
16GB RAM. The superscripts in the list of ‘Irreducible dimensions’ represent
the numbers of equal dimensions. The expressions for primitive idempotents are
tensor product polynomials in the matrices (6). ‘Checksum’ is the sum of all di-
mensions, which should coincide with the dimension of the representation.

Wreath product S4(octahedron) i As(icosahedron)
Representation dimension: 2176782336

Rank: 122776

Wreath product decomposition is multiplicity free
Number of irreducible components: 122776

Number of different dimensions: 134

Irreducible dimensions:

1,46.63,86,93 1215 1632, 187,20, 2470, 3241 3686, 45, 48191 5426 6484 72298 g0?,
817,96412 108223, 128114 144913 16254, 1808, 192794, 216926, 2434, 256104, 2881804
3207, 324594 384772 4054, 4322517 48699, 51276, 5762°08_ 6481999 72017 7299,
768705 8644303 972818 102451 11522562 12802, 129644%° 1458141 1536479, 162016,
17285322 19442712 204820, 21874, 23041935, 25926708 288014, 2916961, 3072223,
3456%°75 36457, 38887495 40964, 4374136, 46081004 5120, 51846924, 58322754
614459, 648018, 65617, 69122719 77766266 81923 8748822 9216327, 103684760,
1152019, 116644695, 1228819, 1312298 138241011 1458013, 155525781 174961999,
1843283196832, 207362085, 233284826 2592016, 26244511 27648260, 311042964,
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328053, 34992277% 36864°, 39366°%, 4147234, 46080, 466563012, 524881023
5529615, 5832019, 590497, 62208877, 699842173 78732242 829444 933121038,
1036804, 1049761079, 11809827, 124416102, 1312208, 13996877, 15746435%,
186624130, 209952568 2332807, 23619634, 279936148, 295245, 314928254, 3542946
41990416, 47239279 5248803, 531441, 62985652, 7085881°, 94478426, 1180980,
1417176°

Checksum = 2176782336 Maximum number of equal dimensions = 6966

Wreath irreducible projectors:
B, =B®?
By =B® ® B, ® B®% © B, ® B,
By =BY° © By ® BY? + BY* @ By ® BY"

Be13sr =B, ® B3 ® B; ® BY* @ BY? ® BY? ® By ® Bs
+ B3 ® By ®B1 ® By ® By ® B3 ® B; ® By ® B3 ® B1 ® B3 ® By
+B®?2 @ Bs® B, ® B®2 ® B, ® B3 ® B; ® B€? ® By
+ B ® BY?® B3 ® By ® BS? ® By ® B3 @ B ® By ® By
Bei3ss =BS? ® By ® B®? © B3 ® B, ® By ® By ® BS* @ By
+ B, ® B, ® B3 ® B$? @ By ® BY? ® B3 ® B®? @ Bs
Be13so =B%? ® BY®* ® B; ® B, ® B3 ® By ® B; ® BS?
+ By ® By ® By ® B3 ® By ® B ® B3 @ By ® B®? ® By ® By
+ B ® B3 ® By ® B ® B3 ® BY® ® By ® By
+ B3 ® By ® B3 ® By ® BY? ® By ® BY? ® By ® B3 ® By
+ By ® BY® ® B; ® By ® BY® @ BS?
+ B3 ® B? ® B3 ® BY* ® By ® B3 ® BY® @ By

Biarra =B5? ® By ® B + B® ® By @ BY® + B ® By @ By + B! @ By
Biazrrs =BY? © By ® By ® Bo © BY" + BY? @ By @ BY? @ By @ BS°

+ BS? @ By ® BS* ® By @ BS? 4+ BS® @ By @ BS* @ By @ Bs

+ BY® ® By ® BS? ® By + BS® ® By ® B3 ® B
Bisar7e =B ® BY? @ BS" + By ® B* @ By ® BY®

+ B3 ® By ® BS® ® By ® BS® 4+ BY® ® By ® By ® By ® BY?

+ BS" @ BY? ® BS® + B © BY* © Bs

Time: 0.58 sec
Maximum number of tensor monomials: 531441
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For comparison, we give a part of the output for a somewhat larger problem.

Wreath product As(icosahedron) i As(icosahedron)
Representation dimension: 8916 100448 256

Rank: 3875157

Wreath product decomposition is multiplicity free
Number of irreducible components: 3875157

Number of different dimensions: 261

Time: 7.35 sec
Maximum number of tensor monomials: 16777216

5. Conclusion

One of the main goals of the work was to develop a tool for the study of models of
multipartite quantum systems. The projection operators obtained by the program
are matrices of huge dimension. Obviously, the explicit calculation of such matrices
is impossible. However, the expression of projectors for wreath products in the form
of tensor polynomials makes it possible to reduce the computation of quantum
correlations to a sequence of computations with small matrices of local projectors.

References

[1] Meldrum, J. D. P. Wreath Products of Groups and Semigroups. Longman/Wiley, 1995.

[2] James, G. D., Kerber, A. The Representation Theory of the Symmetric Group. Ency-
clopedia of Mathematics and its Applications, vol. 16. Addison-Wesley, 1981.

[3] Cameron, P. J. Permutation Groups. Cambridge University Press, 1999.

[4] Bannai Eiichi, Ito Tatsuro. Algebraic combinatorics I: Association schemes. Menlo
Park, CA: The Benjamin/Cummings Publishing Co., Inc. 1984.

[5] Kopusik, B. B. Anropur™ pasioxKeHus IpeJCTaBIeHIN KOHEYHBIX IPYIIIT C TOMOIIBIO
WHBapPUAHTHBIX IIPOEKTOPOB, 3an. nayun. cem. ITOMU, 468, CII6., 2018, 228-248.

[6] Jacobson, N. Structure of Rings. Amer. Math. Soc. 1956.

[7] Rowen, L. H. Ring Theory. Academic Press, Inc. 1991.

[8] Wilson, R. et al. Atlas of finite group representations.

[9] Steeb, W.-H. Matriz Calculus and the Kronecker Product with Applications and C++
Programs. World Scientific Publishing Co., Inc. River Edge, NJ, USA, 1997.

Vladimir V. Kornyak

Laboratory of Information Technologies
Joint Institute for Nuclear Research
Dubna, Russia

e-mail: vkornyak@gmail.com

80



Cluster monomials and Schur positivity

Gleb Koshevoy*and Denis Mironov!

1 Schur functions and Schur positivity

Schur polynomials sy(x1,...,xy) form a vector space basis (over Z) of the ring o
metric polynomials in the variables x1, ... x5, while A runs over the set of partiti
Young diagrams.

A symmetric function is Schur positive if its expansion on the basis of the
functions involves only non-negative coefficients only.

Since a product of symmetric polynomials is symmetric, one can expand it in
of Schur polynomials. In particular, for product of Schur functions, we get

Su(z1,...xn)su(x1, ... oN) = Z cf‘ws,\(:cl, S IN)-
)

Here cﬁ , are the Littlewood-Richardson coefficients. These coefficients are nonneg
since we have a combinatorial description of these coefficients : C,/\w is equal

number of semistandard Young tableaux of skew shape A\ p and of weight v.
For a quadruple of partitions u, v, ¢/, v/, we have

SuSy — S Sy = Z(cl)j,y — cﬁ,’y,)s,\(xl, S IN).
A

Then the LHS is said to be Schur positive if for any A,

A A
C/Jﬂ/ — C‘ul’V/ 2 0.

Questions on Schur positivity of several types of expressions s,s, — s,/s,» has been
and studied in series of works, see [2, 5, 3, 4].
Lam, Postnikov, and Pyaljavskii [4] proved Schur positivity of

Su\/usu/\z/ - S,usy;

and confirmed several open problems posed in [2, 5, 3, 4].

Recall that a flag minor is a minor of a matrix which is equal to a determinai
square submatrix which is constituted of elements of the intersection of a set of co
and the first consecutive rows. To a flag minor Ay, where I = {iy, s, ...,1;} denot
column set, is associated a Schur function sy with A = (ip —k+1,i,_1—(k—1)+1,
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Definition 1.1 A polynomial in flag minors is Schur positive if substituting
Schur functions instead of the flag minors yields a Schur positive symmetric fu

For example, for a subsets I = {iy,is,...,ix} and J = {j1,...,jx} and
{max(iy, j1),...,max(ig, jx)}, I A J = {min(iy, j1), . .., min(ig, jx) }, we have Sc
tivity of the polynomial

ApviAing — ArA.

Namely, this follows from Schur positivity of (3).

2 Cluster algebra of C[SLy"]

Let B be the subgroup of upper triangular matrices of SLy and B_ be that
triangular, wy be the longest element of the Weyl group, the group of permut
[N]. The coordinate ring the big double Bruhat cell SLY := BN B_wyB_, (
has a cluster algebra structure [1].

The cluster variables of such a cluster algebra are specific polynomials in fla
We call cluster polynomials such polynomials.

We state the following conjectures bases on numerous computer experimen

Conjecture 2.1 Any cluster polynomial is Schur positive.

Conjecture 2.2 Any such a polynomial as a linear combination of Schur fun
the full support. Namely, for a cluster polynomial, all integer points of the conuv
vectors corresponding to partitions which support the Schur functions of the corr
linear combination correspond to summands with positive coefficients.

3 Some examples

We choose an initial cluster seed being the seed corresponding to the reduced de
tion s18981 -+ Sy_1 -5 of wy (see [1]). Any sequence of cluster mutations at -
vertices results in a flag minor. Because of that, we get Schur positivity in suc
A mutation at a 6-valency vertex of the initial seed gives a cluster polynom
form
A1 i1+ ) DA it —1] — D1 i1, i — 1) D i1

Substituting Schur functions instead of the flag minors yields the following pc
in Schur functions

S(ij"‘l,ifl)sij — Sij-‘rZS(ij—l’ifl),
where a’ denotes sequence (a,a,...,a) with b entries.

For example, for i = 3, j = 2, we get Schur positivity of (4) as well as v
Coniecture 2.2.
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Schur positivity of (4) can be obtained using a result of ([6]), for which foll
AA;— ApAy
is Schur positive if, for any interval K C N, there holds
max(|/ N K|,|J N K|) <max(|I' N K|, |J' NK]J).

Observation. All cluster variables of the form (5) computed in our exjy
fulfill (6), and thus are Schur positive.

4 Extreme Schur functions of cluster polynom

For partitions v and g, the Schur functions of the product s, s, labeled by the ¢
and the concatenation U v are lexmax and lexmin terms, respectively.

4.1 Two tropical semirings on partitions or Young diag;

Lets us defined two dual tropical semirings on the set of partitions: for one we
the pair of operations as summation and lexmax, and for another as concation:
lexmin.

Namely the first tropical semiring is specified by

(At Ak) ©1 (s i) = (Ao, M)+ (s - i) = (A + s A

and
(Ay oy k) @1 (1, ooy i) = max{(Aq, ..., Ar), (L1, -+, i) }

where max is the lexicographical maximum of two vectors of R¥.
The second semiring is specified by

(Ala"'a)\k) ©2 (:ula"'auk) - (Alv"-v)‘k)u<:u17"'aﬂk) - ()\1,--.,)%,,&1,..
where (x1, ... ,xn)T = (Toq) = ... 2 azg(n)) is a non-increasing ordering of x;’s.

()\17 s ))\k) D2 (1“’17 ce 7/’1’/6) = min{()\17 s 7)\k‘)7 (Ml: S 7:“]{1)}7

where min is the lexicographical minimum of two vectors of R*.

These semirings are dual with respect to transposition. Namely, for a
A= (A1,..., ), let X denote the transposed (dual) partition, X, := #1, wher
such that A\; >4, for j € I. Then

A OV = ()\/ ™1 V/)/, A Do v = ()\/ D1 V/)/.
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4.2

Theorem 4.1 Let Q™ be the initial seed of the cluster algebra C[SLY‘].Le
cluster polynomial in flag minors. Then the expansion of the Schur specializa
on the basis of Schur functions has terms labeled by lexmin and lexmax partit
coefficients 1. Moreover these lexmin and lexmax partitions can be obtained by
the same sequence of mutations from Q™ as for a cluster variables correspon:
but with respect to the two tropical semirings on the partitions.

For example,

(55,3222 + S(6.32.2.1) T 5(732.2)) 5443)5(3.3) T 5(3)5(3.3.3.3)5(2:2,2)5(5.5)

,,,,,,,,,,,,,,,,,,,,
+5(5,4,3,2,2)75(5,5,2,2,1,1) 75(5,5,3,2,1) 75(6,3,3,2,2) 75(6,4,2,2,2)
+5(6,4,3,2,1) 5(6,5,2,2,1) 75(6,5,3,2) 75(6,6,2,2)

= 5(54,3,3) T 5(6,4,3,2) T S(7,4,3,1) T 5(8,4,3)

the lexmin of concatenations of the numerator is (5,4, 4, 3,3, 3, 3,2,2,2), and su
lexmin of denominator (4,3, 3,2,2,2) yields (5,4, 3,3) of RHS; lexmax sums, t
nator yields (14, 10,5, 2), the denominator (6,6, 2,2), and we get (8,4,3) of R
that the support here is the segment [(5,4, 3, 3), (8,4, 3)].

References

[1] Berenstein, A., S. Fomin, and A. Zelevinsky. Cluster algebras III : uppe
and double Bruhat cells. Duke Mathematical Journal 126, no. 1 (2005): 1

[2] F. Bergeron and P. McNamara: Some positive differences of products
functions, arXiv: math.CO/0412289.

[3] S. Fomin, W. Fulton, C.-K. Li and Y.-T. Poon: Eigenvalues, singular va
Littlewood-Richardson coefficients, American Journal of Mathematics, 12
101-127.

[4] T. Lam, A. Postnikov, P. Pylyavskyy: Schur positivity and Schur log-c
arXiv: math.CO/ 0502446

[5] A. Okounkov: Log-concavity of multiplicities with applications to chai
U(1), Advances in Mathematics, 127 no. 2 (1997), 258-282.

[6] B. Rhoades and M. Skandera: Kazhdan-Lusztig immanants and products
minors, Journal of Algebra 304 (2006) 793-811

84



Using tropical optimization in rank-one approxi-
mation of non-negative matrices

N. Krivulin and E. Romanova

Introduction

Low rank approximation of matrices finds wide use in many areas [1], such as
machine learning, statistics, and data compression. In many applications, approxi-
mation by matrices of unit rank is of interest to deal only with the basic information
involved in the data under consideration |2, 3|.

In [4, 5], the problem of rank-one approximation of positive square matrices
is formulated as a problem of minimizing the log-Chebychev distance between ma-
trices. The optimization problem is represented in terms of tropical (idempotent)
mathematics, which deals with the theory and applications of idempotent semi-
fields. A solution approach based on methods and results of tropical optimization
is used to provide a complete direct solution given in compact vector form.

In this paper, we extend the above results to solve the rank-one approxi-
mation problem in the case of rectangular non-negative matrices. The problem is
formulated in terms of max-algebra, which is a tropical semifield with the maxi-
mum in the role of addition, and with multiplication defined as usual. We start
with necessary definitions and results of tropical mathematics, and then apply
them to obtain complete solutions to a tropical optimization problem under dif-
ferent assumptions. The results obtained serve as the basis to derive a solution to
the approximation problem in question in compact closed vector form. We offer
the solution in different forms for the case of arbitrary non-negative matrices and
for the case of matrices without zero columns.

This work was supported in part by the Russian Foundation for Basic Research, Grant No.
18-010-00723.

85



2 N. Krivulin and E. Romanova

1. Tropical algebra

We begin with preliminary definitions and results of tropical mathematics from
[4, 6], which are used in what follows.

1.1. Idempotent semifield

Suppose X is a nonempty set that is closed under addition ¢ and multiplication ®.
Addition and multiplication are associative and commutative, and have respective
neutral elements, zero 0 and identity 1. Addition is idempotent, resulting in the
equality x @ x = x for all x € X. Multiplication distributes over addition, and is
invertible in the sense that, for each nonzero element x € X, there exists inverse
element ! such that  ® x=! = 1. Together with the operations @ and ®, and
their neutral elements, the set X forms the algebraic system, which is usually called
the idempotent semifield. In what follows, the multiplication sign ® is dropped for
simplicity.

The semifield Ryax, x is defined on the set of non-negative real numbers,
and equipped with the addition @ defined as maximum, and the multiplication
® defined as usual. The neutral elements 0 and 1 coincide with the arithmetic
zero 0 and one 1. The power and inversion notations have the usual meaning. This
semifield is often called max-algebra.

1.2. Matrix algebra

Let X™*™ be the set of matrices over X, with m rows and n columns. A matrix with
all zero elements is the zero matrix denoted 0. A matrix with 1 on the diagonal
and 0 elsewhere is identity matrix, which is denoted by I. In the case of max-
algebra, the zero and identity matrices have the usual form. Any matrix without
zero columns is called column-regular.

Matrix addition and multiplication, and multiplication by scalars are defined
as usual, except that the arithmetic operations are replaced by ¢ and ®.

The multiplicative conjugate transpose of a nonzero matrix A = (a;;) €
Rm*™ is the matrix A = (a;;) € X"*™ with the elements a;; = aj_il if a;; # 0,
and az-_j = 0 otherwise.

Consider a square matrix A = (a;;) € X"*™. The trace of the matrix A is
calculated as tr A =a11 D -+ - D ann-

The spectral radius of A is the scalar A =tr A @ --- @ tr'/"(A").

The Kleene star operator for A is given by the formula A* =I®---¢ A" L

The set of column vectors of order n is denoted by X™. A vector that has no
zero elements is called regular. In max-algebra, the regularity of a vector means
that the vector is positive.

The multiplicative conjugate transpose of a nonzero column vector & = (x;)
), where x; = x; ! if ; # 0, and z; = 0 otherwise.

is a row vector x~ = (z;
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2. Tropical optimization problem

Given a rectangular matrix A € X"*™, the problem is to find regular vectors
x € X and y € X" that achieve the minimum
min x Ay by A x. (1)
z,y

The following theorem generalizes the result of the paper [5], and gives a
complete solution to problem (1) in explicit form.

Theorem 1. Let A € X™*™ be a nonzero matriz, pu be the spectral radius of the
matric AA~. Then, the minimum in problem (1) is equal to u'/?, and all regular
solutions are given by

x=(p tAA v TV PA(WTT AT A w,
y=pPA T (nTTAA Y v @ (LA A) w; veX", weX".
For column-regular matrices, the solution can be represented as follows.

Theorem 2. Let A € X™*™ be a column-reqular matriz, 1 be the spectral radius of
AA~. Then, the minimum in problem (1) is equal to ,u1/2, and all reqular solutions
are given by

x=(u 'AAT)*u, wc K™
pVPA e <y < pt?lxT A)”.

3. Application to matrix approximation

The problem of approximating a non-negative rectangular matrix A = (a;;) by
positive matrix X = (x;;) is formulated to minimize the Chebyshev distance in
logarithmic scale, given by
_ -1 =1
z’,g‘I:%i?;O |log a;; —logz;;| = logmrzrtlz?;);o max(a;;T;; , a;; Tij).

Since the logarithm (on the base greater than one) is monotone increasing, the
approximation problem is equivalent to minimizing the argument of the logarithm.
Observing that any positive matrix X of unit rank can be represented as st’,
where s = (s;) and t = (¢;) are positive vectors, we reduce the problem to that of
the form

min  max max(s; ‘a;t; ", sia5;'t).
st ijias; 20 7 J%5 17 7J
Representation of the objective function in terms of max-algebra yields
-1 -1 —1 - T 4T pA—
@ (Si aijtj &) siaij tj) =8 A(t ) Dt A s.
i,j:a;;70

We now formulate the rank-one approximation problem as to find a matrix

X = st”, where s and t are positive vectors that solve the problem

mins~ A7) @tT A s.

s,t
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The last problem has the same form as problem (1) with « = s, y = (¢1)~
and thus admits complete solutions given by the results of section 2.

Theorem 3. Let A be a non-negative matriz, p be the spectral radius of the ma-
triz. AA~. Then, the minimum error of log-Chebyshev approximation is equal to
log(1)/2, and all approzimate matrices are given by st’, where

s=(uAA veu PA(LTI AT A) w,
th = (W V2A (n tAA v e (AT A w) T veX" weX"
The next result holds if the approximated matrix has no zero columns.

Theorem 4. Let A be a non-negative matriz without zero columns, p be the spectral
radius of AA~. Then, the minimal error of log-Chebyshev approrimation is equal

to log u'/2, and all approzimate matrices are given by st’, where
s=(p TAA ) 'u, weX™;
p s A<t < pt/?(A7s).
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Quick triangular orthogonal decomposition of ma-
trices

Gennadi Malaschonok and Gurgen Gevondov

Abstract. A new algorithm for calculating the triangular orthogonal decom-
position of matrices is proposed. It differs from previously known algorithms
by the smallest asymptotic complexity.

Introduction

The problem of the orthogonal decomposition of matrices is still known as the QR-
decomposition problem. It is one of the subtasks that are associated with spectral
decomposition. Given the matrix A, it is required to represent it as a product of two
factors, A=QR, where Q is a unitary matrix (orthogonal in the case of real num-
bers), R is an upper triangular matrix. The algorithm of the QR-decomposition
should not be confused with the QR-algorithm, that is the algorithm for calculat-
ing the spectrum of the matrix (singular value decomposition). There are a large
number of different approaches [1]-[4] to the problem of computing the orthogonal
decomposition, including fast recursive algorithm [5]. However, the best-known
algorithms in terms of the number of operations are algorithms that have cubic
complexity. In this paper, we consider an algorithm of orthogonal decomposition,
which has the complexity of matrix multiplication.

Let A be a matrix over a field. It is required to find the upper triangular
matrix R and the orthogonal (unitary if the initial field is a field of complex
numbers) ) matrix such that A = QR.

For definiteness, we will consider an algorithm applied to a square matrix
A over a field of real numbers.
Consider the case of a 2 x 2 matrix. The desired decomposition A = QR has

the form:
a B\ [ c —s a b
v 6 ) \s ¢ 0 d )’

where the numbers s and c satisfy the equation s? + ¢? = 1.
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2 Gennadi Malaschonok and Gurgen Gevondov

After multiplying from the left of both sides of the equation by the inverse
matrix Q7! = QT, we get: QT A = R.

If v =0 then we canset c=1, s = 0. If y # 0, then A = a?++2 > 0.
Then we get ca + sy =a, ¢y—sa=0and c=aa/A, s=ay/A.

Therefore, 1 = 52 + ¢ = a®/A, hence |a| = VA. c = a/VA, s=~/VA.

We denote such a matrix @ by g ~-

1. Sequential ()R decomposition

Let the matrix A be given, its elements (7, j) and (i+ 1, j) be « and ~, and all the
elements to the left of them be zero: V(s < j) : (a; s = 0) & (a;+1,s = 0).

Let Gi,j == diag(Ii_l,gamIn_i_l). Then the matrix Gi’jA differs from A
only in two rows ¢ and ¢+ 1, but all the elements to the left of the column j remain
zero, and in the column j in ¢ 4 1 line will be 0.

This property of the Givens matrix allows us to formulate such an algorithm

Algorithm
(1). First we reset the elements under the diagonal in the left column:
A1 =G11G21...Gn21Gn_11A
(2). Then we reset the elements that are under the diagonal in the second column:
Az = G22G32..Gp22Gn_1241

(k). Denote Gy = Gk Gr-1,k--Gn-2.Gn-1k, k=1,2,..,n—1. Then, to calcu-
late the elements of the £ th column, we need to obtain the product of matrices

Ak = G(k)Ak:—l-

(n-1). At the end of the calculation, the element in the n—1 column will be reseted:
An—l = G(nfl)An—2 = Gn—l,n—lAn—Q-

You can find the number of operations. It is necessary to calculate the (n? —
n)/2 turn matrices and for each of them 6 operations must be performed. when
calculating A, the number of multiplications of the Givens matrices into columns
of two elements (4 multiplications and 2 additions) is (n — 1)2. When calculating
As, the number of such multiplications is (n — 2)?, and so on. As a result, we get

6(n*—n)/2+6 > i®=3n"—3n+6(n—1)(2n—1)n/6 ~ 2n®

i=1..n—1

Here we count the number of all arithmetic operations and the operations of ex-
tracting the square root.
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2. (QRg decomposition

Let a matrix M of size 2n x 2n be divided into four equal blocks: M = < é g > .
There are three steps in this algorithm.

Algorithm
(1). The first stage is the QR decomposition of the block C:

] A B
C=Q.Ci, M; = diag(l,Q1)M = ( ¢, Dy )

(2). The second stage is the cancellation of a parallelogram composed of two trian-
gular blocks: the lower triangular part A of the block A and the upper triangular
part CV of the block C;. Denote the upper triangular matrix A; and annihilating

matrix Qo:
A _ Al . - A1 Bl
()= (o) e 5)

(3). The third stage is the QRg decomposition of the Dy block: Dy = Q3D3.

. A B
R— dlag(I,Qz)Mzz< oo )

As a result, we get:

M =QTR, Q= diag(l,Qs;)Q>diag(l,Q1).

Since the first and third stages are recursive calls of the QR -procedures,
it remains to describe the parallelogram cancellation procedure. Let’s call it a QP
decomposition.

3. QP-decomposition

A
BU
the lower unit BY of size n x n, n -countable, has an upper triangular shape - all
elements under its main diagonal are zero. We are looking for the factorization of

. AY

the matrix M = QP = (@ 0

It is required to annul all elements between the upper and lower diagonals

of the M matrix, including the lower diagonal. It is easy to see that this can be

done with Givens matrices. We will consistently perform column invalidation by

traversing column elements from bottom to top and traversing columns from left
to right.

But we are interested in the block procedure. Since n is even, we can break

the parallelogram formed by the diagonals into 4 parts using its two middle lines.

We get 4 equal parallelograms. To cancel each of them, we will simply call the

Let the matrix M = < ) have dimensions 2n x n and, at the same time,

), with the orthogonal matrix Q.
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parallelogram cancellation procedure 4 times. We will perform the calculations in
this order: the bottom left (P4), then we simultaneously cancel the top left (P,)
and the bottom right (P,4), and last we will cancel the top right ( P.,). The
corresponding orthogonal Givens matrices of size n x n are denoted Q4. Q- Qrd
and Q. Let

Qua = diag(l,, 2, Qua, Ins2), Qru = diag(l,, 2, Qru, In/2),
As a result, we get:
Q = Qry diag(Qru, Qra)Qud

The number of multiplications of matrix blocks of size n/2 x n/2 is 24.
Hence the total number of operations: Cp(2n) = 4Cp(n) + 24M (n/2).. Suppose
that for multiplication of two matrices of size n x n you need yn® operations
and n = 2% then we get: Op(2FT1) = 4Cp(2F) + 24M (2*~1) = 4kCp(2!) +
24y YKL gk—i=19i8 — 94 (n2/4) 2=

B
SE—1 + 6n2 = 6 n25__z2 + 612

6y 3n? ol
o) =iyt 2 -1

4. The complexity of () R decomposition

Let us estimate the number of operations C(n) in this block-recursive decom-
position algorithm, assuming that the complexity of the matrix multiplication is
M (n) = ynP, the complexity of canceling the parallelogram is Cp(n) = an®, where
a, 5,7 are constants, o = % and n = 2%:

C(n) = 2C(n/2) + Cp(n) + 6M (n/2) = 20(2F71) + Cp(2¥) + 6M(2¥1) =

k k k k
C(20)284) " 2F0p(2)+6 > 2 TIM(2 ) = ) 2K 246y Y "2kl <

1=0 1=0 =0 1=0
k 2n
; 26nf —2n  46(2° —3)(nf — 22)
2k 4 6y280) ) " 2ilA-1) = 672" — 27

=0

Conclusion

Thus, presented algorithm has the complexity of matrix multiplication. If we apply
the standard matrix multiplication (2n® operations for the matrix n x n), then we
need only ~ 2.5n% operations.
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Control of matrix computations on distributed mem-
ory

Gennadi Malaschonok and Alla Sidko

Abstract. Dedicated to research in the field of parallel computer algebra,
in particular the parallelization of matrix recursive algorithms on a cluster
with distributed memory. A new dynamic control scheme for matrix recursive
algorithms is proposed. We considered in detail new software objects that
ensure the effective operation of the dynamic control scheme.

Introduction

The first approach to creating parallel programs was a centralized dynamic LLP
control scheme, in which one of the cluster nodes acted as the dispatcher for the
entire computational process.

Next, the DDP scheme of the decentralized control was developed. In this
scheme, each process node created its own dispatch process. However, in this
scheme, there was no control over the depth of recruitment and the ability to
switch to a new task until the current task was completed.

The new control scheme is called DAP-VAT-schemes. It differs in that it
sequentially expands functions in depth, retaining all states at any nesting level
until all calculations in the current computational subtree are completed. This
allows any processor to freely switch from one subtask to another, without waiting
for the completion of the current subtask account.

1. Recursive algorithm graph

1.1. Examples: matrix multiplication and triangular matrix inversion

For example, we present two simple block-recursive algorithms. Each of them con-
tains a small number of types of recursive blocks.
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The first algorithm is the calculation of the inverse matrix for a triangular
non-degenerate matrix. After dividing the matrices into blocks, we get the equa-

tions
. a 0 -1 z 0
a=(Ca)am=(0 )

r=at k=d!, cx+dz=0, z = —kcz.

The second algorithm is the algorithm of recursive block matrix multiplica-

tion AB = C-
a b I m '\ [ wl w2
c d n p ) \ w3 wid

aA

('_"ff_'f_A?(a,clq)'_ifﬁfji_t« A-(a,b,c,d); B~ (I,m,n,p); ,
a’/ c \d va, m c, \c;m
Cinv@ | [ invia) .
nv(a *
i ; a*| am d,n
b!p c*l c*m
ul u2 u3 ' ud '
W=Cc*x

¢ i;,z,k)-:’B_; e
L8

F1GURE 1. The graph of the recursive inversion algorithm of the
triangular matrix (on the left) and the graph of the block-recursive
matrix multiplication algorithm (on the right).

2. Computational control mechanism

Consider the components of the control mechanism of the computational process.

2.1. Drop
We divide the computational graph into separate compact subgraphs (drops). In
Figure 1, the vertices, which are combined into one drop, are outlined in a square

outline.
Thus, we define the drops as the smallest components of the computational
graph that can be transferred to other processors.
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2.2. Amine

Before the drop is calculated, we need to expand the corresponding subgraph. This
subgraph is called amine. This amine also consists of drops.

For example, the amine A - B consists of 4 drops A - B, 4 drops A- B + C,
one input and one output function.

2.3. Pine

All amines that are formed in one processor are stored in the general list, which
is called Pine.

2.4. Vokzal

At the Vokzal are all the drop-tasks that are awaiting their direction to the calcu-
lations. These tasks are located at different levels. These levels correspond to the
depth of recursion for drops.

2.5. Aerodrome

Each processor that sent a drop task is called a parent. The list of all parent
processors is called an Aerodrome.

2.6. Terminal

The terminal is used to communicate with the child processors that were sent
drop-tasks. All child processors are stored in the terminal.

3. Primary fields and functions
3.1. The main fields of the drop object

— PAD (np, na, nd)— address of this drop.

— Type — drop type (unique number in the list of all drop types).
— InData outData — these are vectors for input and output.

— Amine — the amine of this drop.

— RecNum — recursion number of the drop.

— Arcs — amine graph topology.

3.2. The main fields of the amine object
— PAD (np, na, nd) — address to return the result of the calculation of this drop.

— Type, inData, outData — the same as the drop.
— Drop — an array of all drops of a given amine.

4. QOrganization of computational threads

We use two threads: a computational thread and a dispatcher thread. These
threads will run on each cluster processor.
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4.1. CalcThread

The CalcThread waits for the arrival of the first drop task at the vokzal and starts
the corresponding calculations.

4.1.1. CalcThread objects:
Pine  list of amines on this processor.
— Vokzal — an array of lists of available drop tasks.
— Aerodrome — list of parent processors.
— Terminal — an array of child processor lists.
— CurrentDrop — current drop, which is calculated.

4.1.2. CalcThread functions:

— WriteResultsToAmin — the results of a drop calculation are written to its
amine in the input data vectors of other drops.

— InputDataToAmin — create an amine from a drop, if a new task arrives, we
make an input function.

— WriteResultsAfterInpFunc — write the result of the input function to all the
amine drops.

— runCalcThread() — If a drop-result has come, we register it in another drop by
topology (writeResultsToAmin). If additional components arrived, we make the
input function and write to the amine its result. (inputDataToAmin & writeRe-
sultsAfterInpFunc) If a new drop arrives with a task, we look at the size of the
input data. If the task is a leaf, it make a sequential calculation and it write the
result to other drops (writeResultsToAmin). Otherwise, expand the amine (input-
DataToAmin). If Vokzal is empty, then the isNotEmptyVokzal flag is set and the
counting thread goes to wait another drop.

4.2. Dispatching Thread

The work of the dispatching thread can be divided into 10 processes:

— Waiting for completion signal.

— Reception task.

— Receive free processors.

— Receive and record the status of the child processor.

— Receive the result of the calculated drop and record these results in the corre-
sponding amine.

— Receive non-main components and record it in the right place.

— Sending available tasks to free processors (if there are tasks and processors).
— Sending free processors to a child (if there are no drop tasks available, but there
are free and child processors).

— Sending the entire list of free processors to the parent processor (if the Vokzal
is empty and the Terminal does not contain child processors with positive levels).
— Sending drop results to parent processors.

— Sending additional components to child processors.
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Conclusion

We gave a description of the universal dynamic paralleling scheme for recursive
algorithms on the distributed memory cluster, described the main objects, their
fields and functions, and also explained the operation of the two-thread system
that runs on each cluster core. We have described six new objects that provide
such a control mechanism and give the name of this scheme: drop, amine, pine,
vokzal, aerodrome, terminal. This scheme can be applied to any matrix recursive
algorithms, both with dense and sparse matrices. The scheme was implemented in
the Java programming language using the OpenMPI and MathPartner [6] pack-
ages, and its work was tested on the above matrix multiplication and inversion
algorithms. We plan to conduct a detailed experimental study of the effectiveness
of this scheme on other recursive matrix algorithms.
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Weak Involutive bases over effective rings

Michela Ceria and Teo Mora

Abstract. We discuss the problems related with the extension of Janet theory
to effectively given rings.

As remarked in 1992 by Schwartz [21], in 1920 after a cohoperation with

Hilbert, Janet [11] introduced, under the name of complete/involutive bases both
the notion of Grébner bases and a computational algorithm which essentially an-
ticipated Buchberger’s [1, 2] Algorithm!® (apparently in the strongest formulation
given by Moller’s Lifting Theorem [14]).
The recent extension of Buchberger Theory and Algorithm on each R-module
A [15, TV.50] [17, 5], where both R and A are assumed to be effectively given
through their Zacharias representation [16] suggested us to investigate how far
Janet’s approach can be extended to more exotic settings. Clearly the combi-
natorial aspects of Janet completion necessarily require at least that, using the
terminology of [15, IV.50], the associated graded ring G of A is an Ore-like exten-
sion [13, 6|; an interesting class of such rings, much wider than solvable polynomial
rings [12] on which Seiler [22] applied Janet approach, has been recently proposed
[18]: A =R(X1,..., X, Y1,....Y)/Z, T =1(G) with

G = {Xin—ainin—dij 1§Z<]§TL}
U {YlXj—bjlvlele—ejl:1§j§n,1§l§m}
U ViV —caYiYe — fir: 1 <l <k <m}
a Grobner basis of Z with respect to the lexicographical ordering < on I':=

(X XY Yem|(dy, . s e, . e) € NPT ) induced by Xp < ... <
X, <Y <...<Y,, where

® a;j,bj;, ¢ are invertible elements in R,
o v e {X{ - XP | (dv,...,d;) € N}
° dij,ejl, flk: € A with T(dzj) < XZ‘XJ', T(ejl) < XjYZ, T(flk;) < Y]{;Yz

1Up to Second Buchberger Criterion [3] but probably including the other criteria proposed by
Gebauer and Moller [8]. 99
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The associated graded ring G is obtained by setting d;; = e;; = firx = 0. We
immediately remark that, unless we restrict to the case in which each vj; = 14,
noetherianity is not sufficient to grant temination and finiteness.

Example 1. Simply consider Tamari’s [23] ring Q(X,Y)/I(Y X — X?Y) where the
principal ideal Z = (X) has the infinite involutive basis {X2'Y? i € N} each
element having X as multiplicative variable.

Under this restriction, we obtain in any case a class of rings larger than
solvable polynomial rings? even if R is assumed to be a field; there are in fact

e for each term 7 € I' an automorphism «, : R — R and
e for each two terms 7,75 € I' an element w(7y,7) € R so that the multi-
plicative * arithmetic of G is defined by distributing the monomial product

a1T1 * ATy = CLZ‘OéT1 (ag)w(ﬁ, 7'2)’7'1 O T2
where o denote the classical multiplication in T.

Already under this restriction and even assuming R to be a field, the classical

Theorem 2. [9, Th.4.10] [10, Th.2.10] If an involutive division is left(/right/re-
stricted) continuous then left(/right/restricted) local involutivity of any set U im-
plies its left(/right/restricted) involutivity.

is not obvious [7]: it can be proved by means of Jacobi-like formulas which can
be deduced on effective rings via associativity. The main problem arises when the
coefficient ring D, on which R = D(v)/I is a module, is not a field but just a
PID3; as it was remarked by Seiler [22] one needs at least to follow the standard
approach in Buchberger Theory and speak of weak and strong bases.

Example 3. [20] In the ideal Z := (g1, 92) C Z[X,Y],¢91 := 3X, g2 := 2Y, it holds
T35gs:=XY = gY — g2X while 3X { XY and 2V { XY.

As a consequence the characterization of a set U to be involutive/complete with
respect to an involutive division L which in the field case [9, Def.4.1] [10, Def.2.4]
simply requires that Uycp u L(u,U) = Uyep ul' C I' must be reconsidered since
we should require a formulation Uyep u L(u,U) = UyepuM(A) C M(A) =
{ct:teT,ce R\{0}} but, in general N' := UyepuM(A) € I(U) N M(A) =
Spang {N} N M(A).

For the moment we have postponed the investigation of the strong case and we
[7] have adapted the terminology from the terms I' with coefficients over a field
to the monomials M(A), the coefficients being over an effectively given ring R
and applied Weispfenning multiplication [24, 5] in order to deduce twosided (and
subbilateral) bases from restricted ones, but mainly we have considered only the
easiest weak case. In this setting, of course, we loose one stength of involutiveness,
namely that any monomial w € M(A) has at most one L—involutive divisor in U,

2where each a- is the identity and each (72, 71) = 1 so that a171 * asTe = ajas7 o T2.
3the PIR case simply requires to deal with pr(i%%r annihilators.
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a property which can be granted, via strong bases, only when R itself is a PIR.
Therefore reduction of a monomial ¢ € M(A) must be performed considering all
potential divisors ¢;7; € U such that 7; | 7, 7 = v; oy and looking for relations ¢ =
> s aiay, w(vi, ;) and reduction be performed via classical Buchberger reduction.

In the strong cases, on the basis of |20, 14, 19], we guess that the test /completion
for involutivity of a continuous involutive division, which in the field case (Theo-
rem 2) is local involutivity, should be reformulated as

Claim 4. [10, Th.6.5| Let L be a continuous involutive division. A polynomial set
F' is strong L-involutive if

e for each f € F and each non-multiplicative variable x € NMrp(lc(f),le(F)),
the related J-prolongation f - x;,
o foreach f,g € I the related P-prolongation slcm(rl,‘ls{}ST(g)) f—i—tlcm(T,](_;q()f%’T(g)),

where ¢, s are the Bezout values such that slc(f) + tic(g) = ged(le(f),lc(g),
e for each f € F the related A-prolongation af, a being the annihilator of le(f)

reduce all of them to zero modulo F'.

There is still some research required in the strong case when R itself is PID; we
need to investigate whether both the classical |9, 10] approach and the recent RID
[4] suggestion are able to recover the division structure of polynomial domains.

Example 5. For the ideal Z :=1 <8X, 4X3,2X6 36Y2,6Y3, Y4) C Z[X,Y] a (min-

imal) strong Grébner basis is U := {8X,4X3,2X% 36Y2,4XY?2 6Y3,2XY3 Y4}
with respect the Janet/Pommaret division a strong minimal involutive basis is

U ={8X"Y710<i<1,0<j<1}u{ax®*ty7 0<i<2,0<5<1}
U {2X°Y7,0 < <3}u{36Y?,6Y3 Y U {4Xx Ty 0<i<4}u{2X'TY30<i<4}
with

T | M(r) | NM(r)
v? {X, Y} | 0
{2x5v7,0 < j <3} {x} {v}

) {v} {X}
U\ {2x6,2x0y,2x0y2 2x6v3 v4} | ¢ {X,Y}
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Numerical Symbolic Dynamics: Complexity of Fi-
nite Sequences

Myllari Aleksandr, Myllari Tatiana, Myullyari Anna and Vassiliev
Nikolay

Abstract. We study the complexity of the finite sequences that were con-
structed numerically by integrating equations of motion of the equal mass
free-fall three-body problem. We construct symbolic sequences using close bi-
nary approaches, in which the corresponding symbol in the sequence is the
number of the distant body. Different approaches to estimate complexity are
considered: Shannon entropy, Kolmogorov complexity and Arnold complexity.

Introduction

Description of the problem and some history can be found in [6] and [7]. See also
the paper by Chase et al. [3] in this issue. Here, we concentrate on the analysis
of complexity of finite sequences and compare different methods to analyze com-
plexity. Shannon entropy is one standard method to estimate "randomness" of
the sequence. We also use other approaches; for instance, we use the length of
the archive as an estimate of the Kolmogorov complexity. Another approach to
estimate complexity of the finite (binary) sequences was suggested by Arnold [2].
This method is based on the first differences of the sequences. We compare the
results obtained via the different methods.

The equal mass free-fall three-body problem is convenient for study since
it allows easy visualization of initial configuration: if we place two bodies in the
points (—0.5;0) and (0.5;0), then all possible configurations will be covered if we
place the third body inside region D bounded by two straight line segments and
with the arc of the unit circle centered at (—0.5,0) (Fig. 1) [1]. This region is used
in the following visualizations.

We used symplectic code by Seppo Mikkola (Tuorla Observatory, University
of Turku) [5] for numerical simulations.
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FiGURE 1. Region D of initial conditions.

1. Shannon entropy and Kolmogorov complexity

We construct symbolic sequences using binary encounters. We detect the minimum
distance between two bodies, and the corresponding symbol is the number of the
distant body. Some systems disrupt fast, so some sequences are short. In this case
end of the sequence consists of 0’s. Thus, our symbols are from the alphabet {0, 1,
2, 3}. Some systems have a long life (e.g. metastable systems [4]), so their corre-
sponding sequences are long. To have a reasonable computing time, we constructed
symbolic sequences of length 100. Since we are interested in the analysis of active
three-body interactions, as one approach we consider sub-sequences of each of
these sequences, increasing the length step-by-step, calculating Shannon entropy
for each of these sub-sequences, and finding maximum value of these entropies.
Maximum values (and moment of time/length of the sub-sequence) correspond to
the stage of active interaction between bodies. Figure 2 shows maximum values of
Shannon entropy.

Some features revealed on the histogram of maximum values of the entropy
and seen on the scatterplot of maximum values of the entropy - corresponding
length of symbolic sequence are studied by Chase et al. [3].

As an estimation of the Kolmogorov complexity we use the length of the
archive of the sequence. Results are shown on Fig. 3.

2. Complexity of finite sequences

Arnold |2| suggested the following approach to estimate the complexity of finite
binary sequences (or complexity of a function z, regarding j’s element of the se-
quence x; as a function of the argument j). Consider a set M of all possible
sequences of length n. Let us define (following Newton’s idea) the increment se-
quence: we thus consider the linear operator A: M — M, y = Ax defined by the
formula y; = x;41 — x;. To have n increments, we define x,,41 = 71, making our
sequence z cyclic (the function x, whose value at j is x;, is then n-periodic).
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FIGURE 2. Maximum values of the entropy.

The map A of the finite set M into itself is described by a directed graph
with 2" vertices x € M. In this graph, exactly one edge starts from each vertex x
(and leads to Ax). It is convenient to denote binary sequences by corresponding
binary numbers: sequence x = (z1,...,%,) corresponds to X = 7 - 2" 1 + 25 -
2"=2 4 ... + x, - 1. Examples of these graphs are given in Figures 4 - 7. Each
connected component of the graph contains a cycle, and it contains only one cycle
|2]. Usually, there are several connected components of the type (O,, * Tyr ), where
O, is an m-vertex cycle, framed by a forest of m rooted (binary) trees T with
2F vertices directed to the roots belonging to the cycle O,,, see Figures 4 - 7. An
exception is the cases when n is a power of 2, in these cases there is only one
connected component, and all sequences converge to 0 (see Fig. 5 and Fig. 7 left).
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Ficure 3. Kolmogorov complexity estimated as a length of the
archive of the symbolic sequence.
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F1GURE 5. Graph of the map A: M — M for n = 4.
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F1GURE 7. Graph of the map A: M — M for n = 8 (left) n = 10
(right).

The definition of the complexity is as follows: we say that an object x is more
complicated if the length of the cycle of the component of the graph containing
the point z is larger. Inside the components whose cycles have equal lengths, a
vertex is said to be more complicated if its distance from the cycle is larger [2].

In our case, we deal with sequences from the alphabet {0, 1, 2, 3}, so our
sequences are quaternary. Some examples of analogs of Figures 4 - 7 for quaternary
sequences are shown in Figures 8 - 9.
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F1GURE 8. Graph of the map A: M — M for quaternary se-
quences, n = 3.
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FI1GURE 11. Arnold complexity of the symbolic sequences for n =
10 (left) and n = 64 (right).

Unfortunately, studying long sequences puts a heavy demand on computer
hardware: the size of the arrays is 4™, so we considered only casesn = 8...13, 16, 32
and 64. Some examples are given in figures 10 - 12. Using n = 2¥ is possible for
larger values of n since in this case the corresponding graph is connected (tree)
and all iterations converge to 0, see, e.g. Fig. 5.
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F1GURE 12. Arnold complexity of the symbolic sequences for n =
16 (left) and n = 32 (right).
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3. Discussion

We have used different methods to estimate the complexity of finite symbolic
sequences that were obtained by numerical integration of the equations of free-
fall equal-mass three-body problem. These methods stress different features of the
sequences studied, but different methods of analysis of the complexity, and even
different ways of constructing symbolic sequences resulted in similar partitioning
of the phase space.
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Litvinov-Maslov Dequantization of Matrix Alge-
bras: New Insights and Techniques

Nikolayev Dmitry

Abstract. Tropical mathematics studies semifields with idempotent addition
obtained via extreme logarithmic deformation of the real semifield known
as Litvinov-Maslov dequantization. We investigate unobvious aspects of its
generalization to the matrix case giving raise to a new class of tropical algebras
that we refer to as uncanonical. We classify tropical matrix algebras obtained
by dequatization of the real one and provide computational examples.

Introduction

Tropical mathematics studies semirings and semifields with idempotent addition.
For example, the semifield Ry,ax + is defined as the set R U {—o0} equipped with
addition a @ b = max(a,b) and multiplication a ® b = a + b, zero 0 = —o0 and
unit 1 = 0. The relationship between usual and tropical algebras was described
by G.L. Litvinov and V.P. Maslov in terms of logarithmic deformation of the real
semifield (quantization) parametrized by some paramter h € R and the subsequent
taking the limit when h — 0 (dequantization). Other tropical algebras like Ryax,
Rmin,+ and Ryin, x could be obtained via the same procedure depending on how
exactly the original algebra is being deformed and how the limit is being taken [1].

A semimodule over a semifield is a generalization of the classical notion of
a linear space over a field, wherein the corresponding scalars are the elements of
a given semiring and a multiplication is defined of the ring and elements of the
module |2, 3]. The matrix semimodule could be turned into matrix algebra con-
sidering only square matrices semimodule with respect to matrix multiplication.
The tropical matrix algebra has two important but not equivalent constructions
through Litvinov-Maslov dequationtization of real matrix. The most remarkable
fact is that one of them admits one additional way of dequantization giving raise
to a new classes of tropical matrix algebras that we refer to as uncanonical. We
classify tropical matrix algebras obtained by dequatization of the real one and
provide computational examples.
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1. Dequantization of Scalar Algebras

A semifield (S,®,®,0,1) is a set S equipped with addition @ and multiplication ®
operations, zero 0 and unit 1 elements such that (S, ®, 0) is a commutative monoid,
(5/{0},®,1) is a comutative group, ® is distributive over @, 0 is an absorbing
element a ® 0 = 0. Tropical mathematics studies semifields with idempotent
addition a @ a = a. Taking into account the multiplication group properties of
semifilds division a @ b = ab~! is also available.

Algebra ) a®b a®b
Ry, Ry u {hIn(0)} hln(eh + en) axb
Ry, x» R u {hIn(0)} hin(ef + e?) a+b

TABLE 1. Quantized scalar semirings

For example, Rpax,+ is the set R u {—o0} equipped with addition a @b =
max(a, b) and multiplication a®b = a+ b, zero 0 = —oo and unit 1 = 0. According
to Litvinov-Maslov approach an explicit construction of tropical algebras listed in
Table 2 is obtained via the composite map ¢nopuy : Ry — 5, — S that sequentially
transforms the real semifield R into a quantized semiring S, by up : Ry — 5p and
then 5j, into tropical semifields S by raking the corresponding limit ¢; : S, — S.

Algebra S a®b a®b
Runin, x Ry v {+o0} min(a, b) axb
Rmax, x Ry v {—o0} max(a, b) axb
Rumin, + R u {+0} min(a, b) a+b
Rmax, + Ry {—o0} max(a, b) a+b

TABLE 2. Tropical semirings

The role of Sy, could be played by partially quantized R, « or fully quantized
R+,.x, semifield, where +j and x; denote new operations induced by the variable
change * — hlnz defined as a +5, b = In(exp(a/h) + exp(b/h)) and a x, b =
In(exp(a/h) x exp(b/h)) = a + b and parametrized by h € R playing the role of
Plank’s constant. This parameter h € R generates an ordered sequence of semirings
Sy, that has a limit depending on its sign defined in the following way

R _ |anin,><; h — _0; . [Rmin,_g_, h — —O;
+hn,xX [RmaX,Xa h — +(); +h,Xn T [Rmax,—l—y h — +0.

2. Dequantization of Matrix Algebras

A semimodule over a semifield is a generalization of the notion of vector space over
a field wherein the corresponding scalars are the elements of an arbitrary given
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semiring and a multiplication is defined between elements of the semiring and el-
ements of the semimodule. Matrix semimodule could be turned into an algebra
by considering square matrices with respect to their multiplication. The tropi-
cal matrix algebra has two important but not equivalent constructions through
Litvinov-Maslov dequationtization of real matrix. The most remarkable fact is
that one of them admits one additional way of dequantization giving raise to a
new classes of tropical matrix algebras that we refer to as uncanonical.

Algebra S a®b a®Db
R, " (Ru {hIn(0)})" ™" Aij +n Bij Yn_i Aik X By
R, | Ry {hn(0)})"™ Aj +n Bij a1 Aik %1 Buj
R™™ | (R {hIn(0)})"" Ay +n Bij Ehzzl As xn By

TABLE 3. Quantized matrix semirings

Square matrix algebra over S is the set S"*™ with respect to addition [ and
multiplication [X], zero O and unit I defined for A, B € 5™*™ by the formulas

n
{AEB};j = A;; ® Bij, {AXB};j = @ Air ® By;.
k=1
In our notation matrix operations are denoted by box signs and scalar oper-
ations — by circle signs. So, the tropical matrix algebra S has two important
but non-equivalent constructions: (1) quantization-dequantization of real scalars,
and the subsequent modularization of tropical scalars, (2) modularization of real
scalars,and the subsequent quantization-dequantization of real matrices. As in pre-
vious case the limits coulb be taken.

Algebra S {A® B}, {A® B}ij

[Rr:;;(n ([R U {+OO})an min(A4;;, B;;) Sy A x By
Rome™ | (R U {—o0})"™"" max(Ay;, By;) S Ag % By
Rr[:iin] (IR Y {+OO})an min(A;;, Bi;) miny_q A X By
Rl (IR U {_OO})an max(A4;;, Bi;) maxj)_, Air X B,
[Rf:izn) (Ru {+OO}>an min(A;;, B;;) min;_, A;x, + Bi;
REx™ | (Ru{—oo})™" max(A;;, Bi;) max?_, Ay, + By,
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Foliation of the special linear group SL(n,R) into
conjugacy classes from polynomial algebra point of
view

Yuri Palii

BBenenne

The foliation of a Lie group G under the conjugacy action as well as the coadjoint
orbit foliation of dual space g* of a Lie algebra are interesting objects both for
mathematicians and physicists. The natural choice of matrix elements as parameters
for matrix groups allows to apply algebraic methods for local trivialization of
these foliations. To find foliated coordinates (more precisely, parameters on the
conjugacy classes or on the coadjoint orbits), one should solve a system of partial
differential equations which expresses their invariance under the transformations
related to the transversal vector fields. The components of vector fields are minors
of the group element (algebra element). Keeping this in mind we look for the
foliated coordinates as rational functions of the matrix elements. In this paper we
show how to reduce this problem to solution of a linear system of equations.

Key words: Lie groups, Lie algebras, conjugacy classes, coadjoint orbits,
foliation, Lie derivative, invariants
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A universality theorem for stressable graphs in the
plane

Gaiane Panina

Universality theorems (in the sense of N. Mnév) claim that the realization
space of a combinatorial object (a point configuration, a hyperplane arrangement,
a convex polytope, etc.) can be arbitrarily complicated. In the paper, we prove
a universality theorem for a graph in the plane with a collection of signs of its
possible equilibrium stresses ("oriented matroid of stresses").

This research is motivated by the Grassmanian stratification (Gelfand, Goresky,
MacPherson, Serganova) and a recent series of papers on stratifications of config-
uration spaces of tensegrities (Doray, Karpenkov, Schepers, Servatius).

Here are details: let I' = (V, E') be a graph without loops and multiple edges,
where V' = {v1,...,v,,} is the set of vertices, and F is the set of edges. A realization
of I'is a map p: V — R? such that (ij) € E implies p(v;) # p(v;). We abbreviate
p(vi) as p;.

A stress s on a realization (I',p) is an assignment of real scalars s(i, j) to the
edges. One imagines that each edge is turned to a (either compressed or extended)
spring. A stress s is called a self-stress, or an equilibrium stress, if at every vertex
pi, the sum of the forces produced by the springs vanishes:

Z 5(i,j)uij = 0.
(ij)eE

Pi—P;

[pi—pjl

Given realization (I',p), the set of all self-stresses &(I',p) is a linear space

which naturally embeds in R¢, where e = |E|. Set M(T',p) := SIGN(S(T',p)). In

simple words, we do the following: enumerate somehow the edges of the graph, and

for each non-trivial stress, list the signs of its values on all the edges. We obtain a
collection of strings (elements of (+, —,0)¢).

Here u;; =

is the unit vector pointing from p; to p;.

Given a graph I' and an oriented matroid M, define the realization space of
the pair (I', M) as the space of all realizations of I" that yield the oriented matroid
M. We factorize the space by the action of the general linear group:
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R(IT,M)={p: M(T,p) = M}/GL(2).

In general, semialgebraic sets are subsets of some Euclidean space R defined
by polynomial equations and inequalities. A semialgebraic set is called a fat basic
primary semialgebraic set (FBP semialgebraic set) if there are no defining equa-
tions, all the defining inequalities are strict, and the coefficients of all the defining
polynomials are rational.

Our main result is: For each FBP semialgebraic set A, there exists a graph
I' and an oriented matroid M such that the realization space R(I', M) is stably
equivalent to A.

Acknowledgement. This research is supported by the Russian Science Foun-
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Gaiane Panina

St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg State Uni-
versity

e-mail: gaiane-panina@rambler.ru

118



Counting perfect matching with a selected edge on
C,, X C,, tori

S.N. Perepechko

Introduction

In this report, we discuss the dimer problem, which is one of the classical lattice
models of statistical mechanics. The combinatorial interpretation of this model
is reduced to the enumeration of close-packed dimer configurations. For many
kinds of graphs popular in physical applications, such configurations are perfect
matchings.

For qualitative estimation of the model parameters, regular graphs of degree
q are usually used, assuming that the probability of belonging of each edge of the
lattice to the matching is the same and is equal to 1/¢. In the thermodynamic
limit, this approximation comes to a satisfactory description of the properties of
the model, but the conditions for its use are not entirely clear.

In our study, the tori C), x C), of even order are used as an example of regular
graphs. The set of edges of these graphs can be divided into subsets of F,, and
E,. The edge e,, € E,, if it belongs to one of the simple cycles C,,. Accordingly,
the edge e, € E, if it belongs to one of the simple cycles C,,.

During the study, one of the edges e,, € E,, was selected and the number
of perfect matchings in the graph containing this edge was found. Denote the
obtained value by K,(nm% The tori C,,, x C,, are convenient because K. ﬁqm,% does not
depend on the choice of the edge e,.

Having performed similar calculations for one of the edges e,, one can find
the value of Kfff )n and estimate the occupation probabilities of the e, and e,, edges

(m) (n)
pom) _ Kmn  pey  Kmn
m,n Km’n Y m,n Km’n Y

where K,, ,, is the total number of perfect matchings on the torus. In the present

work, for small values of m < 11, closed form expressions for Ry, ) and R&?}n are
found and their asymptotic behavior is investigated. In particular, explicit values

119



2 S.N. Perepechko

for R%n ) = lim,, oo R,(f;? T)L and R%L ) = lim,, oo R,(ﬁ,)n are obtained. For a few values
of m > 10, extensive sets of numeric data were computed. The use of convergence
acceleration methods allowed to estimate R%n ) and Rgf ) with sufficient accuracy
for these values of m.

1. The technique of calculation

At present, simple methods for calculating K,(nm% and Kr(;f )n with arbitrary values of

torus parameters are unknown. To derive closed form expressions, it was necessary
to fix one of the torus parameters and solve a set of enumeration problems for
each individual value m > 2. However, the approach used in this work has certain
advantages. The fact is that a wide range of recurrence relations were obtained
earlier [1], which are satisfied by the sequences { K.,  } at fixed values of m < 21. If

the sequences { K ﬁlmn} and { K. 7(7? ?n} satisfy the same or similar recurrence relations,

then the values of K ?(an)L and K. 7(73 )n can be expressed as linear combinations of K, ,,.

To enumerate perfect matchings, the method proposed half a century ago by
Wilf was used [2|. Modern computer algebra systems allow its effective implemen-
tation not only for small graphs, but also for graphs of moderate order containing
several thousand vertices [3].

In our work, all calculations were performed in the Maple system. The advan-
tages of this system include the effective implementation of operations on integers
of very large bit width, support for multithreading, as well as the ability to derive
recurrence relations directly from the initial segments of numerical sequences. So-
lutions of recurrence relations were found using the rsolve procedure, and then
simplified by the built-in tools of the system. Various manipulations of the re-
currence relations are greatly facilitated when using commands from the genfunc
package.

Since the orders of recurrence relations increase exponentially [1], their deriva-
tion turns out to be extremely resource-intensive. For this reason, for m > 10, only
small initial segments of the {Kr(nm%} and {K,(g )n} sequences were calculated. The
length of these initial segments was chosen so as to ensure the necessary accuracy

of finding the limit values R,(qT ) and RS{” )

The length of the initial segment can be significantly reduced if we use the
methods of convergence acceleration. When choosing the acceleration method,
we were guided by the fact that all the roots of the denominators of generating
functions associated with the {K,, ,,} sequences are simple and real. In this case,
it makes sense to use the well-known e-algorithm [4]. The implementation of this
algorithm in the computer algebra system allows all intermediate calculations to be
performed in rational numbers, which eliminates rounding errors and instabilities
inherent in all extrapolation methods.
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Counting perfect matching 3

Evaluation of the coefficients of the asymptotic expansions of R%n ) and Rq(ff )
was carried out by numerical data fitting. The least squares method was used,
implemented in the LSSolve procedure from the Optimization package.

Since the necessary condition for the existence perfect matching in the graph
is the parity of its order, then for odd m, the parameter n must be even. In this
case, it is advisable to somewhat change the notation made earlier. We assume that

for odd m, the value of Kfnm% denotes the number of perfect matchings with the
selected edge e,, in the graph C), x Cs,. The value of Kr(rﬁ )n should be subjected
to the same adjustments. As a result of the changes, the sequences {K,(nm%} and

{Kq(#, )n} will not contain zero elements and the order of recurrence relations will
be halved. Previously, similar notation was used in [1] when calculating K, ,.

2. Some results

The results of the calculations showed that for all the studied values of m, the
sequences {K,(Jf )n} and {K,, ,} satisfied the same recurrence relations. The order

of the recurrence relation for the sequence {Ky(nm%} has always been one less for
odd m and 2 less for even m. For example, for m = 3 we get

K?Enfrg = 6K:§T2—1 - 6K§TL72—2 + K§f§3_3, K?ETL) = 5K?ETZ)—1 - Kzgn;)—z

Taking into account the initial data K3y = 15, K{% = 64, K" = 299 and K} =

10, K éng) = 48, the values of Kéﬂ;) and K §”,2 can be expressed in terms of the total
number of perfect matchings on the torus

m 1 ny 1 m
K;E,,n) =37 (K3 nt1 — Kzn-1), Kén) = 5K — K;g,,n)-
Based on the well-known formula for K3, and the expressions obtained

above, it is easy to verify the monotonicity of the sequences {Réng} and {Ré’j:b) ,

with the sequence {Rényz} decreasing and {Rgﬁ)} increasing. The same condition

was fulfilled for all other odd m. The limiting values of the edges e,, and e,

occupation probabilities have a simple form: R:())m) =1/v21, Rgn) =1/2—-1/v21.
)

For even m, the relationship between the values of Rgf T)L and R,(q?,n 1S more
complex. When n < m, the result of comparing these values depends on the parity
of torus parameters. Obviously, for n = m, the edges e,, and e, are equivalent,
therefore, R%’? T)L = Rg,?,)n. However, for n > m, perfect matchings contain more
edges belonging to the cycles C,, so R%rf % > R%l,)n.

Due to the rapid growth of the orders of recurrence relations, the explicit

formulas for K&my)b and KT(,? )n turn out to be cumbersome even for small m. For
example, when m = 4, we obtain a recurrent relation of the sixth order, which is

satisfied by the members of the sequence { K iiﬁ) }
K7 =4k 45K, = 24K o+ 5K AR - KT
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4 S.N. Perepechko

To calculate RZ(::L), it is convenient to express the values of K (m ) in terms of K4

(m) 7 % % 1 K * _LK o
b 192( a1~ Kana) + 32( ant2 = Kan-2) 192( 4,n+3 4,n-3)-

The normalization condition K (m ) + K, (n) = lK4n, which is satisfied for all

m, allows us to find the limit Values of the occupation probabilities: R( ) =
1/(2v3), R in) = 1/2 — 1/(2V/3). Closed form expressions for the probabilities

Rﬁ,ﬁ" ) and Rﬁ,’} ), containing radicals, can be obtained for some other values of m.
For example, for m = 5, we have

30 + 2v/205 R _ 1 30 +2v/205
VAL T 2 BVAT
In our work, the inverse power dependence was used to describe the transition
to the thermodynamic limit. Such asymptotic behavior is quite common for many
lattice models. Fitting the values of R,(;Ln ) and R% ) obtained at 2 < m < 12 in
accordance with the function A + B/m®, we obtain the following results:

R(m)

0.3284 0.3284 .
RV ~ 02498 — 50, RO ~0.2502 + ——=o if m s odd,
0.6017 0.6017
(m) (n) LT
R} 0.2489 + 1050 R, ~ 0.2511 1959 if m is even.

The parameters A, B, and a were obtained by the least squares method
using the LSSolve procedure from the Optimization package. The scatter of the
parameters found allows us to estimate the accuracy of the asymptotic expansion
coefficients.
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Confined stochastic disturbance for functional it-
erations based on a continuous-event model of a
biosystem

Perevaryukha Andrey

Abstract. In our report we consider a new method for including in the com-
puter model a special trigger function, which introduces a random value in
the right side of the hybrid system of differential equations, with changes in
the coefficients in the equation. Stochastic perturbation receives only an it-
erative trajectory in a limited range in the vicinity of an unstable repeller
point. The method uses a continuous-discrete structure of calculations with a
set of predicates. The approach makes it possible to simulate the scenario of
the collapse of fish stocks with a transition from a stable state to intermediate
and limited stochastic fluctuations.

Introduction

Natural processes in the environment have a significant stochastic component. Tur-
bulent effects introduce noise when building hydrological models from observations
of the spread of pollution spots [1]. In population dynamics, random factors de-
termine the success of the reproductive cycle for many marine species. The early
stages of the life of marine fishes are subject to changeable aquatic environment
and the whirlwind of the sea winds. Stochastic continuous models are often used
for modeling in biology. However, the stochastic external influence may increase or
decrease depending on the state of the biosystem itself. For populations in a nor-
mal state, random fluctuations in survival are not visible, they are inferior to the
direct action of trophic competitors. Principles change when excessive fish stocks
are used up. The purpose of the work is to describe the transition to a collapse
when a population falls into the zone of random fluctuations. For several impor-
tant reasons, the stochastic component ©(N(0)) must be introduced into a narrow
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2 Perevaryukha Andrey

critical state of a model object. In the report, we will show this fact using the ex-
ample of {¢(xg)}} — oo iterations, which we obtain by numerically solving the
hybrid system of differential equations for the problem of modeling fish collapse.

The novelty of our approach is that we can choose the neighborhood in which
the trajectory z,+1 = ¥ (2n, n—1) — Qnyn, where the value @, reflects the impact
of exploitation, in computer calculations will show stochastic properties.

1. Hybrid model

Let us further consider the three-stage model of the survival of the generation
from N(0). Factors in the loss of abundance will change significantly as the stages
of life change, but depending on the density. A complex functional dependence
will create thresholds that lead to outbreaks for insects [2] outbreak scenario after
accidental release of population state from the control factors control interval ).
For fish situation lead to a rapid collapse of stocks during overfishing.

Survival of generations R = N(T') from N(0) = AS,S € Qg on the interval
tel0,...&w...,T] we describe the stages of ontogeny by a predictively redefined
system:

—(a@(§)N(t) + O(N(0))B) N(t),0 < t <&
—(a1N(§)/w(w) + B)N(1),§ <t <w, (1)
—(aaN(@))N(t —¢),w<t<T

dN
dt

[0,&], [€, w] — duration of stages. «, 8 — indicators of mortality rates. ©(N(0)) =
[1 + exp (—kN(0)2)], limpy(0)—00 O(N(0)) = 1 function determines the threshold
reduction in reproduction efficiency for S < L. Let the region of a small group
of individuals £ C U; € g, where reproduction of fish is due to random factors
that we take into account, complementing the discrete—continuous model by in-
direct interaction. We will connect O(N(0),w) = O(N(0)) x w(t) with the index
of calculating the conditional dimensional development from the second equation:
w(t) = [G/(N?/3+0)] x y,w(0) = wp, ¥ — uniformly distributed random variable.
Obtained on the basis of unimodal dependence ¥ (z) = Uy ) N (T), N(0) € ZF
numerical solutions of the Cauchy problem (1) on the interval ¢t € [0,7] itera-
tion trajectory x,+1 = ¥(z,),ro < L has the properties of a bounded stochas-
tic perturbation. Instead of a threshold point: ¥(x.) = z. < maxi(z)Vr <
Ty —€:limy, o0 Y (24) = Up, Uy < € S0 we create an interval of probabilistic behav-
ior of a trajectory that admits an event: x¢ < z.,¥"(xg) > max () simulating a
outbreak situation from a small group — the trajectory comes to a stable regime
VP () = YPT2(x;), 1; > maxp(x), where there is no stochasticity.

The model (1) combines stochastic and deterministic behavior in ranges that
do not have a smooth boundary for allowable fish stock values (g.
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Confined stochastic disturbance in hybrid iteration 3

Chaotic fluctuation for fish population in crisis we can obtain in equation
with delay:
dN pvN(t —7)

At () ver™ + k(e’T — 1)N(t — 1) — wNE(0).

Conclusion

Thus, we have obtained a model where the collapse is determined by falling into
the regime of a stochastic state with an insignificant number of fish stocks. If the
threshold state is represented by a point-repeller, then a speedy state of death of
N(t) = 0 will occur. The complete death of the fish species in the environment is
a long-lasting phenomenon [3]. Biological systems are adaptive [4] and fishes able
to change time lags in ontogenesis. Fish species shorten the life cycle for survival.
A stochastic model may demonstrate an unexpected recovery of a population that
has previously experienced a collapse. The described collapse model with recovery
was realized for whitefish in Lake Ontario.

The work was supported by the Russian Foundation for Basic Research (grant
17-07-00125) and partly topics AAAA-A16-116051250009-8 head Corresponding
Member of the RAS Yusupov R.M in SPIIRAS.
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Differentiation and special functions on finite fields

N. V. Proskurin

Annroramma. We consider complex functions over finite fields. In this context,
we find finite analogues for some classical special functions. That are the
error function and the incomplete gamma function. Our approach is based on
consideration of differential equations satisfied by the special functions.

1. Preliminaries

Given prime p, let F, be the finite field with ¢ = p! elements and with prime
subfield F, = Z/pZ. Let e,: F, — C* be a non-trivial additive character. With
some h € F¥, one has e,(x) = exp(2mitr(hx)/p) for all x € F, (tr denotes the
trace function I, — [,). We write F for the multiplicative group of F;, and F for
the group of multiplicative characters of [, i.e. for the group of homomorphisms
x: F; — C*. By € we mean the trivial character, ¢(x) = 1 for all x € 7. Extend
each x € ¥ to all of F, by setting x(0) = 0.

The classical trigonometric sums

G(x) = Z x(x)eq(x) with x € EJ* (Gauss)

zelFy
J(a, B) = Z a(z)B(l1—xz) with «,f € @q* (Jacobi)
zcl,

may be considered as finite analogues of Euler’s gamma and beta functions.

2. Elements of analysis
Consider the complex vector space €2, of all functions F, — C. Given character
n € F;, define the linear operator D: Q, — Q, by

1

D"F(z) = <) tEZF F(t) iz —t)
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2 N. V. Proskurin

for all F': F, — C and x € I,. We then have

DEF(x Z F(t

telfy,

1

——D"F(x F(t)n(t —x)

G(n) %;‘

for all F' and x as above and n # e. By Evans [1|, D"F is the derivative of order
n of F. This definition is motivated by analogy with the Cauchy integral formula
for the derivatives of analytic functions.

One finds easily, D" takes constant functions to zero function, whenever 1 # e,
and D*D? = D for characters o, 8 subject to a3 # €. Also, given two functions
E and F, x € I, and the character v we have the formula for integration by parts

ZE DVF(z ZF
zel, zcl,

and the Leibniz rule for the v-th derivative of the product

v 1 (;(N)(;(MLQ Vi
DYEF(z) = pp— Z o) DME(z) DVFF(z).
HEEF

Clearly, this differentiation differs significantly from the one considered in the
classical analysis and in the differential algebra. In the classical setting, the orders
of derivatives are integers, i.e. elements of the additive group Z. The orders n of
the derivatives D" are elements of the finite cyclic group fFZ;

Let F(x) = e4(—x) for all z € . Given any character x, we have DXF' = F. More
generally, if ¢ € F, and F(x) = eq(—cx) for all z € [, then DXF(z) = x(c)F(x)
for all z € [F,. It follows, for any F' € €2, given by the Fourier series

= Z C(m)eq(—mz)
mel,

one has

DXF(z) = ) x(m)C(m)ey(—maz)
mely
for all z € [F,.
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Differentiation and special functions 3

3. Error function

The complimentary error function erfc is entire function defined by the probability
integral

2 oo
erfe(z) = ——= [ exp(—t?)dt for z € C.
7/

We can treat erfc as the only solution to the differential equation
! 2 2 .
w'(z) = ——=exp(—z°) with w(0) = 1.

NZs

We are interested in a finite field analogue of erfc. Take any v € ]}?q* and ¢ € F,.
Assume v # € and ¢ # 0. As an analogue of the equation above, consider the
differential equation

DYw(z) = cey(2*) for all z € F,.

Solving the equation for w we get

Z v(t)eq((z—t)?) +d

teF,
with arbitrary d € F,. We are free in choice of the constants ¢ and d. Let erfc, be
the function w above with ¢ = G(v) and d = 0. So that
erfe, (z) = Z v(z+1x)eq(z?) forall 2z €F,
zcl,

We consider erfc, as a finite field analogue of complimentary error function erfc.
(It depends on character v used in the definition of differentiation.)

4. Incomplete gamma function

For the incomplete gamma function one has

I'(s+1,2) :/e_mxsd:c for s € C and z € C\ (—o0,0].

Fix any s € C. The function w = I'(s + 1, ) is the only solution to the differential
equation

w'(z) = —e%2°  with w(0) =1(s+1).

Its finite analogue should be a complex function over ﬁq* x F,. Take any v € E]* .
Assume v # € and consider the equation

D'w(z) = ceql2) u(2)
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with some u € ﬁq* and ¢ € 7. Solving the equation for w we obtain the function

r,: @q* x [F, — C which we treat as finite analogue of the incomplete gamma
function. Certainly, it depends on character v involved into DY. Explicitly,

I(p,x) = Z p(t)v(t —x)eq(t) forall pe @q* and z € F,.
teF,

For p,v € E* and z € [, let us introduce the sum

E(p,vyz) = Z p(u) v(l —u)eq(zu).
u€lfy
The classical Gauss and Jacobi sums are united in the sum FE. Indeed, one has
E(u,v;0) = J(pu,v) and one can evaluate F(u,v;x) in terms of G(u) or G(v) if
either v =€ or p =e.
It occures, our function FE is the main part of the incomplete gamma function.
Precisely, one has

L,(p,w) = p(z) v(—r) E(p,v;x) for all z € Fy.
One has also I, (i, 0) = G(pv).
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Some new identities for Bernoulli numbers
via central Krawtchouk polynomials

Nikita Reporez

Abstract. Some new identities involving Bernoulli numbers are proposed.

In this paper we demonstrate some new identities involving central Krawtchouk
polynomials K, (2) defined as K,,(2) = K™ (2) = S (—1) )2 ,m >0

J=0 3/ \m—j
, where KT(,lN)(z) denotes Krawtchouk polynomial of order N and degree m [1],
and the sequence of the Bernoulli numbers { b;};>0 with by = —3 [2] .
We assert that the following below identities (1)-(6) are valid:
1.
m . ) 4m
‘ VY A
j:zo(#ﬂcm)@ 27)b; = m+1 J m 2 0 (1)

2. Starting from this item we introduce an “umbral variable” [3] ¢ as a following
rule for “change of variables”

dp={¢"}: ¢ = (2—27)b; , j>0.
So, any polynomial on variable ¢, expanded by powers of ¢, after applying
to it the shown above “change of variables”, becomes a linear combination of

the Bernoulli numbers.
In these notations identity (1) can be written in “umbral form” as follows:

. 4m
Km(¢) = mal ; m 20 (2)

The author (N. Gogin) is grateful to OC CPA-2019 member A. Myllari for suggesting in his
letter to me such witty nickname as “Reporez”.
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3. From the properties of the central Krawtchouk polynomials proved in
[4, Lemma 3| and identity (2) one easily gets identity :

is being considered as a polynomial on ¢ with the consequential change
¢! = (2 —27)b;.

o=1y .
For example, if m = 4 the expansion of the binomial coeffifcient ( 2 ) is

4
11 4342 3 4 . ) . ]
13758—2—f+ 1552 —%—l—f@,andchangmgqﬁ] = (2—-27)b; for 0 < j < 4,

one gets 13758-(2—20)-1—%—}1-(2—21)-(—%)4-%.(2_22).(%)_2_14.(2_
2%)- 04 557 - (2—2%) - (—55) = £ in full accordance with (3).

4. From (3) easily follows that

Seor(B)-m o az (@)

m=0

where H,, is the n-th Harmonic number [2].

5. At last, again from formula (3) we obtain an equality for the ordinary
generating functions of its left and right sides:

= In(1+1¢
(1+t)¢21:¥ . |t < 1. (5)
In particular for ¢ = —1 in (5) we get a nice “umbral” equality
AN 2!
(2) Z( 2) < k ) $I—(2—29)b; ! (6)

Remark.
All the above equalities (1)-(6) were approved with MATHEMATICA-10.
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On polynomials of odd degree over reals

Alexandr V. Seliverstov

Abstract. We prove that there exists a large set of real hypersurfaces having
elliptic points. In particular, for almost all nonlinear polynomials of odd degree
in two or three variables, the graph of the polynomial contains an elliptic
point. Some polynomials in many variables are also considered.

Let us denote by F an affine hypersurface, that is, the vanishing locus of a
polynomial over the field of real numbers. A smooth point P € F is said to be
elliptic if it is the isolated real point of the intersection of the hypersurface F with
the tangent hyperplane 7p to F at this point and the second fundamental form is
positive definite. Roughly speaking, in a sufficiently small analytic neighborhood of
an elliptic point, the hypersurface looks like an ellipsoid. If the affine hypersurgace

is a graph of a polynomial f, then the matrix of second partial derivatives af{ 8f$k
J

is definite at every elliptic point.

In a sufficiently small analytic neighborhood of an elliptic point, all points
of the hypersurface are elliptic. If a polynomial is defined over the field of ratio-
nal numbers, then its graph contains an everywhere dense set of rational points.
Consequently, if there exists an elliptic point on the graph, then there exists a
rational elliptic point. It is easy to check whether a given rational point is elliptic.
In practice, one can use software for symbolic computations [1].

The term “almost all” means “all but a set covered by a vanishing locus of a
nonzero polynomial”.

Theorem 1. Given an odd integer d > 3. For almost all bivariate polynomials
of degree d, the graph of the polynomial contains an elliptic point.

Remark. In accordance with Theorem 1, for almost all nonlinear bivariate
polynomials of odd degree, there exists a point, where the matrix of second partial
derivatives is definite. Thus, for each bivariate polynomial of odd degree, there ex-
ists a point, where this matrix is semidefinite. In particular, for linear polynomials,
the matrix vanishes.

Example. The graph of the polynomial xi(23 — 323) is the monkey saddle;
it has no elliptic point. But there exists a tangent plane that intersect the surface
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along three straight lines meeting at one point. At the origin all second partial
derivatives of the polynomial vanish.

Theorem 2. Given an odd integer d > 3. For almost all polynomials of degree d
i three variables, the graph of the polynomial contains an elliptic point.

Remark. On the general three-dimensional cubic hypersurface over the field
of complex numbers, straight lines fill the whole hypersurface. If this property
holds over the field of real numbers, then the hypersurface has no elliptic point.
Nevertheless, there is a large set of real cubic hypersurfaces having an elliptic
point.

Theorem 3. Given both integer n > 1 and odd integer d > 3. For almost all
(n+1)-tuples of linear functions in n variables, the graph of the sum of d-th powers
of the linear functions contains an elliptic point.

Remark. In the general case, a linear function is inhomogeneous.

Example. Let us consider a cubic form of the type 23 + 3 + pu(zy +22)3. The
matrix of second partial derivatives is equal to

G < (14 p)zy + pao p(zy + 22) )
p(ry + 22) pry+ (1 +p)ry )

Its determinant is equal to 36 (ux% + pxi + (14 2u)x1x2). If z; = 29 > 0 and
p > —1/4, then the matrix is positive definite. On the other hand, if 4 = —1, then
the determinant is equal to —36(z% + z122 + 23) < 0. In this case, for all points,
the matrix is neither positive nor negative definite.

Theorems 1-3 can be used to develop new heuristic or generic algorithms
(cf. |2]) to check some properties of real hypersurfaces. On the other hand, the
recognition of elliptic points on a surface can be used in computer-aided geometric
design.
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Apparent singularities of D-finite systems

Shaoshi Chen, Manuel Kauers, Ziming Li and Yi Zhang

Abstract. We generalize the notions of ordinary points and singularities from
linear ordinary differential equations to D-finite systems. Ordinary points and
apparent singularities of a D-finite system are characterized in terms of its
formal power series solutions. We also show that apparent singularities can be
removed like in the univariate case by adding suitable additional solutions to
the system at hand. Several algorithms are presented for removing and detect-
ing apparent singularities. In addition, an algorithm is given for computing
formal power series solutions of a D-finite system at apparent singularities.
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First order linear ODE equivalent to deformed
Heun equation

S. Slavyanov and O. Stesik

The Heun equation is a Fuchsian equation with four Fuchsian singularities
21 =0, 29 =1, z3 =1t, 24 = 00. It can be written as

(H(d/dz,z) — h)w(z) =0, with

1 d? d
H(d/dz 7) = f(t)[ L () w(a) £ = -1,
o2 = [[2 =270 =201 -0) 2L we) —a2= 30, -a): (1)

The deformed Heun equation arises at addition one apparent singularity located at
25 = q into equation (1) with the requirement that the derivative of those solution
normalized as w(q) = 1 is equal to w'(q) = p.

It can be presented in the symmetric operator form as

B () 4 Fo@u(z) —o()w'(z) _
(H(p,z) — H(p, q))w(z) + D —q) 0 (2)

Heun equation (1) and deformed Heun equation (2) both can generate Painlevé
equation P% with the help of antiquantization procedure [1], [2], [3], [4], [5], [6]-
Let the 2 x 2 linear system corresponding to deformed Heun equation (2) be

3

. ) N
P(2) = ARV = [ 2 | (o), 3)

Z — Zj
j=1 J

where Y (z) is a vector with components y;(2),y2(z) and AW are residue ma-
trices at singularities with constant matrix elements agi) and zero determinants
det AU) = 0. The eigenvalues of AU) are denoted by 0 and ©;; then the following
equalities between matrix elements are valid as a result of the condition on the
determinants

aé]Q) 0, — ag ) a11 (@ - aljl)) (4)

gt -
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Further we assume that the matrix-residue at infinity is diagonal

3 (4)
A(oo) _ ( Z] 1911 . 0 ) ) (5)
0 Zj:l(@] ay)

This condition leads to two equations binding the off-diagonal matrix elements of
matrix residues at finite singularities z;.

3 3
Sl =0 "af) = (6)
j=1 j=1

Solving equations (6) it is possible to exclude aé?i)

tions.
Hence. the off-diagonal matrix elements a12 and as; are linear function of z
and can be presented as

and ag) from further computa-

a1z = —(afyt +afy (t — 1))z + afyt = p(z — q1)
a9 = (aéll)t + (2)( 1))z + a( )t = pa(z — q2) (7)
(4)

Presentation (7) gives four equations for p;, ¢; as functions of a;;’ and vice versa.

Namely

) @ 2 il —1) ) —peqe o) p2(g2 — 1)
52) -y a§2) i1 ;1) - aé1) -1 (8)
Turning to (6) it holds

(e @2 2.2 (e @2 2 —1)2
agll) — ~1 + + Iulql’ aﬁ) _ Y2 + \/_2 + :u2(q2 ) (9)

2 Vg e 2 4 (t—1)2

Combining all equations (4), (6), (7) we appear at nine equations binding
nine matrix elements al(.‘,i) and classical parameters pu;, g1 as a consequence.
Second order equations for the functions yx(z), r = 1,2 would be

y1(2)" + Pi(2)y1(2) + Q1(2)y1(2) =0, v2(2)" + Pa(2)y2(2) + Q2(2)y2(2) = 0,
where

/
Pi(z) = —log' a;z — trA, Qi(2) = det A — ar» (an)’

a2

/
PQ(Z) = — IOg/ as1 — tI“A, QQ(Z) = det A — a1 (Z—;)

and the prime means the derivative with respect to z. Rather boring computations
for which the use of any ACS is preferred show that equations (10) appear to be a
deformed Heun equations. At the final step Painlevé equation P° can be generated.

Our study is alternative to that in [7] where the linear 2 x 2 first order system
equivalent to Heun equation was constructed. It should be mentioned that for the
latter the residue matrix at infinity is nl(ét7diagonal but triangular.
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BellY polynomials in Mathematica and asymp-
totic solutions of integral equations.

O. Marichev and S. Slavyanov

The importance of classical polynomials is widely recognized in the theory of
ordinary linear differential equations. Less known is the role of Bell polynomials in
the theory of functional equations both linear and nonlinear. Here a short review
of modern state of BellY polynomials implemented in CAS Mathematica is given
and also an example of their use at solution of functional equations arising in the
theory of integral equations with rapidly oscillating kernels is exposed.

Asymptotic solution of Fredholm equation with a large parameter in the
exponent leads to the necessity for solution the following two functional equations
[1], [2] one linear and the other nonlinear

OF (z,s) n OF (s,t)
Os 0s

=0 (1)

with s = ¢(2), t = ¢(¢(2)).

h(z) = ph(9(2))T (2, ¢(2)) (2)

Here ¢(z) and h(z) are unknown functions denoted as the phase and the
amplitude while F'(z,¢) and T'(z.¢) are known functions which are regular in an
appropriate vicinity of the origin. The parameter p plays the role of an eigenvalue.

The rigorous mathematical approach to the posed problem is extremely diffi-
cult since the small denominators arise. However abstracting from these mathemat-
ical heights the approximate solution in terms of polynomials can be constructed
near the origin. The actions with polynomials include differentiation of superpo-
sition of functions and calculation the inversion of functions. For these purposes
handling with BellY polynomials implemented in CAS Mathematica can give a
needed help. The proposed approach can be used in various physical problems, for
instance, in the theory of open resonat(i%‘sg
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The problem of resolution of singularities in arbi-
trary characteristic.

Mark Spivakovsky

The subject of this talk is the problem of resolution of singularities in alge-
braic geometry, but it is intended for a more general audience of algebraists than
just specialists in birational geometry. The problem of resolution of singularities
asks whether, given an algebraic variety X over a field, there exists a non-singular
algebraic variety X’ and a proper map X’ — X which is one-to-one over the
non-singular locus of X. If we cover X’ by affine charts, the problem becomes
one of parametrizing pieces of X by small pieces of the Euclidean space k™. This
localized version of the problem, called Local Uniformization, is usually stated in
terms of valuations and can be interpreted as follows. Let (R, M, k) be a local
quasi-excellent noetherian domain (resp. a local k-algebra essentially of finite type
without zero divisors) and let R, be a valuation ring containing R and having
the same field of fractions as R. Find a smooth finite type R-algebra R’ such that
R’ C R,. The Local Uniformization Theorem asserts the existence of such an R';
it was proved by O. Zariski in 1940 in the case when char k = 0 and is one of the
central open problems in the field when char k£ =p > 0.

To study local uniformization we will introduce the notion of key polynomials
associated to a simple extension ¢ : K — K(x) of valued fiels, defined by Saunders
Mac Lane in the 1930-ies in the case of discrete valuations and generalized by M.
Vaquié, F.J. Herrera Govantes, J. Decaups, W. Mahboub, M. A. Olalla Acosta, J.
Novacoski and M. Spivakovsky.

We will discuss the applications of key polynomials to the problem of Local
uniformization in arbitrary characteristic.
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Numerical Symbolic Dynamics: Studies of the In-
variant Components

Chase Tisagh, Myllari Aleksandr, Myllari Tatiana and Vassiliev
Nikolay

Abstract. We consider equal mass free-fall three-body problem. We construct
numerically symbolic sequences using close binary approaches and analyze
components revealed on the scatterplot of maximum values of the entropy -
corresponding length of symbolic sequence and as peaks on the histogram for
the Shannon entropy of these sequences.

Introduction

Symbolic dynamics was used to analyze some special cases of the three-body prob-
lem: Alexeyev [2, 3, 4, 5] has found theoretically an intermittence of motions of
different types in the one special case of the three-body problem - Sitnikov problem.
Symbolic dynamics was also applied in two other special cases of the three-body
problem: the rectilinear problem (numerically) (Tanikawa & Mikkola [10, 11]); and
the isosceles problem (Zare & Chesley [12, 6]).

n
0.8
0.6
0.4
M,

0.2

-04 -02 0.2 0.4 d

FIGURE 1. Agekian-Anosova region D.

Equal mass free-fall three-body problem is convenient for study since it allows
easy visualization of initial configuration: if we place two bodies in the points
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(—0.5;0) and (0.5;0), then all possible configurations will be covered if we place
the third body inside the region D bounded by two straight line segments and arc
of the unit circle centered at (—0.5,0) (Fig. 1) [1]. Here, we analyze components
revealed on the scatterplot of maximum values of the entropy - corresponding
length of symbolic sequence and as peaks on the histogram for the maximum
Shannon entropy of the symbolic (sub-)sequences constructed using close binary
approaches that were found earlier [9]. We used symplectic code by Seppo Mikkola
(Tuorla Observatory, University of Turku) [8] for numerical simulations.

400000¢
300000
200000¢

100000¢ —

02 04 06 08 1.0

F1GURE 2. Histogram of the maximum values of Shannon entropy
for sub-sequences.

Analysis of structures

We integrate equations of motion numerically and construct symbolic sequences
during the process using close binary approaches: we detect minimum distance
between two bodies, and corresponding symbol is the number of the distant body.
Thus, our symbols are from the alphabet {1, 2, 3}. Some systems disrupt fast, so
some sequences are short. In this case end of the sequence is padded by 0s. Some
systems live long (e.g. metastable systems [7]), so corresponding sequences are long.
To have a reasonable computing time, we constructed symbolic sequences of length
100. Since we are interested in the analysis of active three-body interactions, we
consider sub-sequences of each of these sequences, increasing the length step-by-
step, calculate Shannon entropy for each of these sub-sequences, and find maximum
value of these entropies. Maximum value (and moment of time/length of the sub-
sequence) correspond to the stage of active interaction between bodies.
Histogram of the maximum values of Shannon entropy for sub-sequences has
three distinct modes corresponding to 3 different types of sequences: sequences
consisting of only one symbol, sequences consisting of two symbols equally rep-
resented, and sequences with all three symbols equally present (Fig. 2). Some
structures can also be seen on the scatterplot of maximum values of the entropy
- corresponding length of symbolic sequence in the neighborhood of these modes
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100}
80}
60}
40}

20¢

0.2 0.4 06 0.8 10
F1GURE 3. Scatterplot of maximum values of the entropy - cor-
responding length of symbolic sequence.

(Fig. 3). Here, we analyze these structures. In particular, we trace initial condi-
tions and structure of the sequences corresponding to the lines in the left part of
Fig.3. Just one point on Fig.3 can correspond to many sequences, see e.g. Fig.4.

Figures 5 and 6 show two feachers of Fig.3 and corresponding initial condi-
tions. Points forming these curves correspond to the sequences of decreasing length
that are constructed from two symbols only: one (leftmost curve) or two (second
curve) symbols of one kind, and all other symbols of another kind. We trace the
structure of these sequences and corresponding initial conditions.

Authors acknowledge Dr. Ian V. J. Murray, Dept Physiology and Neuro-
science, St. George’s University for the collaborative purchase of Wolfram Mathe-
matica.
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FIGURE 4. Initial conditions corresponding to the point (0.,100)
in upper-left corner on Fig.3 - 29321 points.
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F1GURE 5. Left: leftmost curve on Fig. 3 selected. Right: corre-
sponding initial conditions.
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FiGURE 6. Same as Fig. 5, second curve selected.
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On computer algebra aided generation of exact so-
lutions for Fredholm integro-differential equations

K.D. Tsilika

Abstract. We introduce a topic in the intersection of symbolic mathemat-
ics and computation, in the fields of Boundary Value Problems for linear
integral equations. Our computational approach gives emphasis to mathe-
matical methodology and aims at both symbolic and graphical results. It is
implemented in a widely used computer algebra system, Mathematica. We de-
velop a solver for unique solutions of Fredholm integro-differential equations
in a Mathematica notebook, that displays analytical formulations that can
be called up directly. Our easy-to-use program provides in one entry, exact
solutions for the abstract operator equation
Bu = Au—gF(Au) = f,D(B) ={u € D(A) : ®(u) = N¥(u)},u € D(A),f €Y
(1)
Our routine could make a research tool for a wide range of scientists, as
BVP for integro-differential equations are often at the forefront of mechanics,
physics, biosciences and finance. The code is written in Mathematica (v. 11.3).
As the interpretation of the code is immediate, it allows ample space for
improvements and customization.

Introduction

Applied sciences study phenomena mathematically formulated as Fredholm integro-
differential equations subject to boundary conditions. In this study we use the
symbolic computation program Mathematica |7] in order to generate the symbolic
and graphical representation of the exact solutions of Fredholm integro-differential
equations assuring their existence first. Our computational approach does not re-
quire solving the integro-differential equation with built-in functions and makes
no assumptions for the initial conditions. The theoretical methodology comes from
the work in [1, 2, 3, 4].

Analytical mathematical methods due to their complexity are not generally
clear and immediately comprehensible to a large pool of scientists. In addition,
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computations work out faster with computer software, even faster when creat-
ing automatically the existence conditions and the intermediate results required
before the analytic solution. The computer codes are fully presented and can be
reproduced as they are in computational-based research practice. Results of so-
lution steps obtained as outputs are created in a way as to be interpreted with-
out the knowledge of the theoretical methodology. Mathematica has a dedicated
function to symbolically solve an integro-differential equation (solves also Fred-
holm integral equations), DSolveValue (new feature in Mathematica v. 11). How-
ever, this function seems applicable only for low input parameters and does not
give results in most models. Built-in functions NDSolve, NDSolveValue fail also.
Numerical solutions of integro-differential equations (using numerous approxima-
tions e.g. Laplace transform methods), is a topic of interest in Mathematica fora
(https://mathematica.stackexchange.com/questions/24626).

The paper is organized as follows: after a brief introduction into the math-
ematical context in section 1, we explain the workings of the code in section 2.
Guidance on how to use and/or change the commands and adapt it to other cases
is provided.

1. Mathematics Background

Consider the boundary value problem of the type

Bu = Au— gF(Au) = f,u € D(A),f €Y, (2)
D(B)={ue€ D(A) : ®(u) = NV (u)}, (3)

A: X — X is an ordinary m order differential operator
Au(z) = aou™ (z) + arul™ (@) + ... + apu(z), a; € R,D(A) = X}

where X = Cla,b] or X = Ly(a,b), p > 1, X} = C™|a,b], it X = Cla,b], or
X =W(a,b),if X = Ly(a,b).

F(Au) = col(Fi(Au), ..., F,(Au)) is a functional vector representing the
integral part of the integro-differential equation, g = (g1,...,9,) is a vector of
X", N a constant m x [ matrix, & = col(®q,...,P,,), ¥ = col(Vyq,...,¥;), are
functional vectors with W(u) standing for the multipoint or integral part of the
boundary conditions. Let z = (21, 22, ..., 2 ) be a basis of kerA.

Boundary value problems B : X — X of the type of (1) for the specific case of
[ = n have been studied by Vasiliev, Parasidis, Providas in [4], using the extension
method. The extension method is a generalization of the direct method, which
is presented in [4]. Here, problem (1) is investigated and solved also for the case
Il #n, X #Y. We assume multipoint or nonlocal integral boundary conditions,
which allows us to consider a very large class of problems for the equation (1).
The ultimate result is the exact solution of problem (1).
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2. Program Explanation

In this section we propose how Mathematica resources can display analytic solu-
tions of Fredholm IDEs that can be called up directly. All formulations come from
simple code, with symbolic computations, matrix-vector multiplication, products
of operators, as defined by the solution methods proposed in [4]. The subroutine
solely uses simple Mathematica ’s built-in functions as Inverse and Det.

The user must set the input parameters:

The parameters in problem (1)
m — the order m of the differential operator A,
1 = the number of components or the dimension [ of the functional vector W,
n = the dimension n of the functional vector F',

The structural elements of (2)
F = functional vector F'is the integral part of the IDE
g(.)=the functional vector on the left hand side of (2)
f(.)=the function on the right hand side of (2)
t= the list with the values of the variable in the boundary conditions
z— the vector with the basis z of KerA biorthogonal to ®

The structural elements of the boundary conditions
nmatrix = the m x [ matrix NV satisfying the matrix equation ®(u) = NV (u)
U(.) =the functional vector ¥ of the matrix equation ®(u) = NV (u)

Par example, to define a particular F' and ¥ with n—2, [—=2 write
F[function_] := {fol 22 * functiondr, fol functiondx}
Ul function | := {function/.t — ti[[1]], function/.t — ti[[2]]}

The output consists of the following results:
1. W, V=the matrices in the condition for the injectivity of B (existence condition
also)
2. Det|V], Det|W|=Determinants of W,V needed for the necessary and sufficient
condition of injectivity of B
3. Automated testing for injectivity of B or the existence criterion as defined in [4]
4. solution— the analytic solution of Fredholm integro-differential equation
5. Plot the solution in the domain of the variable

The relevant output is created in a way as to be interpreted without the
knowledge of the theoretical methodology. The criterion for injectivity of B that
is tested and verified is the only requirement to apply Theorem 1 from [4| and
formulate the unique solution.

The core part of the code is given in figure 1.

Conclusion

The computer codes proposed provide 1) formulation of the exact solution of Fred-
holm integro-differential equations with multipoint or nonlocal integral boundary
conditions, 2) solvability exploration of infinite number of examples and 3) imme-
diate construction of operators and functionals within the solution methodology.
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«The solution methode
W := IdentityMatrix[n] - Flg[x]1

¥ = IdentityMatrix(1] - ¥[z] .nmatrix

inverseA [ function | i= 2 J-‘ {t = %"« function dx
(m=1) 1 Je
«Verify the assumptions of the theorems
eTesting necessary and sufficient conditions for operator Bu=Au-gF(Ao) to be injectives
Det [W]
Det[V]

If[Det[W] ¢ @EL Det[V] # @, "The IDE has a unigque solution™, “The selution is not umique”]

olution by the exact solution methods

solution := Simplify[
inverseA[f[x]] » (inverseA[g[x]] +» z.nmatrix. Inverse[V] .¥[inverseA[g(x]]]).
Inverse [W] .F[£[x]] + z.nmatrix.Inverse[V] .¥[inverseA[f[x]]]]

Print[“The exact solution of the IDE is” Flatten[solution]]

Plot[solution[[1]], {t; @; 1), AxesLabel -+ {"t", "u(t}~}; PlotLabel + "u(t) over the domaim [©,1]7]
F1GURE 1. The exact solution routine in Mathematica
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Combinatorial encoding of continuous processes

Anatoly Vershik

How to encode with locally finite arrays the pure continious message? The
simplest example of such problem — the encoding of the sequence of independent
random values with contniuous distribuion using discrete locall finite alphabet.
This problem is simultaneously related to information theory,combinatorics, dy-
namics and logic. One of aspects — to enlarge the framework of symbolic dynamics
and notion of ordinary stationarity. We give the main example: -how to use Weyl
simplices for such encoding and then general definition of quasi-stationarity of the
space of paths of the graded graphs.
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Computer algebra aided generation of a mimetic
difference scheme for 3D steady Stokes flow

Vladimir P. Gerdt, Yury A. Blinkov and Xiaojing Zhang

In paper [1| two of us suggested an algorithmic approach to generation of
finite difference schemes for polynomial nonlinear differential equations on regular
grids and applied it in [2| to generation of difference schemes for 2D incompressible
Navier-Stokes equations. Then, in [3, 4] the novel concept of s(trong)-consistency
which strengthens the universally adopted concept of consistency for difference
schemes was introduced and in [5, 6, 7] for 2D incompressible Navier-Stokes equa-
tions it was shown that s-consistent schemes have better numerical behavior than
the s-inconsistent ones. In addition, in [8] and [9] for steady 2D and 3D Stokes
flow, respectively, it was demonstrated that the concept of s-consistency plays the
key role in construction of the modified equation.

In the present talk we consider algorithmic issues of computer algebra aided
generation of a mimetic difference scheme for the governing system of linear partial
differential equations for steady Stokes flow whose involutive form is given by

(FY) = w,+v, +w, =0,
F(2) = pw_i(umm‘i‘uyy‘kuzz)_f(l):07

! FO .= py—ﬁ(vm—kvyy—kvzz)—f@):O, (1)
F& = pz_é(wxac“‘wyy‘i’wzz)_f(g):07

\ F(5) = pww+pyy+pzz_ :ng)_ 752)_ 53):0~

where x, y, z are the independent variables; the velocities u, v and w, the pressure p,
and the external forces (), £(2) and £ are the dependent variables; the constant
Re is the Reynolds number and A := 9,, + 9, + 0. is the Laplace operator. The
equation F®) = 0 is integrability condition to Eqs. {F®) = 0|1 < i < 4} called
the pressure Poisson equation.

The system (1) possesses the permutational symmetry

{z,u, D} e {y,0, fP} e {20, fO}. (2)

The work is supported in part by the Russian Foundation for Basic Research (grant No. 18-51-
18005).
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To preserve this symmetry at the discrete level we consider the Cartesian grid
with the spacing h and apply the method of paper [1] to construct a difference
scheme for (1) which is symmetric under permutation (2), strongly consistent and
conservative. The s-consistency means inheritance by the scheme such important
algebraic property of (1) as vanishing of any element in the differential ideal gen-
erated by the polynomials in (1) on any common solution to these equations. This
means that for the difference scheme any element of the difference ideal generated
by the polynomials in the scheme approximates a polynomial in the differential
ideal. Besides, we want to have the scheme to be conservative, i.e. having the
conservation law properties inherent in (1).

The procedure of the scheme generation described in paper [9] yields the
following results

(P .— W2kl T UG kL L Vil k2 L T ULk L)
: 2h 2h
Wi41, k41,142 — Vj4+1,k+1,1
Wil ke b JHLRLL
2h
S(2) . Pi+2,k+1,141 — Dy, k41,141 (1) =
F2) .= o7 — §A1 (wj 1) — fj+1,k+1,l+1 =0,
=(3) . P41, k42,141 — Dj41,k, 1+1 1 ) (2) —
FG) .— o7 — ﬁAl (Ug,k:,l) - fj+1,k+1,l+1 =0,
Sy Digl kel 42 — Pitl k1,0 L (3) _
F@) .— o — %Al (wj,k,l) - fj+1,k+1,l+1 =0,
(1) (D) f(2) _ 2
F6y . i3 k2042 T4t ke ke T2 ka3 042 T S0 ke 142
' 2h 2h
(3) R (3) o]
42, k42,143 — Jj2 k42,141
— + AQ (pj,k,l) - 07

. 2h

where where A and A, are finite difference discretizations of the Laplace operator
acting on a grid function g; . ; as

A o 9j+2, k+1, 141 + G5+1, k42,141 T G541, k+1,1+2 — 69541, k+1,14+1
1 (gj,k,l) = 52

Gi+1,k, 141 T G5, k41,141 T Jj41, k+1,1

A . Gi+4, k+2, 142 + gjv2, k4, 142 T Gi+2, k+2, 144 — 69542, k2,142
2 (gj,k,l) : AR2

Gj+2, k, 142 T G4, k+2, 142 T Jj+2, k+2,1
4h? ’

Note, that the replaces As with Ay preserves consistency of the scheme but
violate its s-consistency. Based on the s-consistent scheme one can compute its
modified equation [9] which allows to analyze the order of accuracy of the scheme.
The obtained scheme is of the second order.

_|_
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Sequential construction of samples
from residual allocation models

Yuri Yakubovich

Abstract. We describe a simple procedure to construct a sample from a resid-
ual allocation model without sampling the underlying distribution. The talk
is based on an ongoing joint work with Jim Pitman, University of California
at Berkeley.

Introduction

Samples from random discrete distributions occur in a variety of models of mathe-
matical genetics, ecology, computer science and statistics [1, 3, 6, 7|. Let (Py, P, ...)
be a random discrete distribution on the positive integers, with P; > 0 for all j > 1,
and }_,; P; = 1 almost surely. By a sample from (P;) we understand a sequence of
random variables (X,...,X,,) such that, given (P;), they are independent and

PIX; = j|(P))] = P;, i=1,...,n, jeN={1,2,... }.
A sequence (P;) can always be represented in the stick-breaking form

Jj—1

Py=H; [[(1-H)) (1)

=1

for some sequence of random discrete hazard probabilities (H;), with 0 < H; < 1
almost surely. Hazards H; can be interpreted as conditional probabilities P[X; =
JlXi > j]. We say that the random discrete distribution is generated by residual
allocation model (RAM) if random discrete hazards H; in (1) are independent.
The case when hazards are also identically distributed is also known as Bernoulli
sieve [2]. The most studied RAM is the celebrated GEM(#) distribution and its
two-parameter generalization [5] which appears for H; with beta(l — «a, 6 + i«)
distribution, that is with density B(1 — o, 0 +ia) 'h=%*(1 — h)?Te=1 0 < h < 1,
for « € [0,1) and 0 > —a.
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There is a natural way to generate samples from a RAM related to the so-
called Kingman paintbox construction. First generate a sequence (P;) by some

means, say using the representation (1), and let Fj := 25:1 P; be cumulative
sums so that
k
Fp=0; F=1-]J0-H), keN, (2)
i=1
and P, = F), — Fj._q for k > 1. Note that
0< Fy < Fy <---11 almost surely. (3)

These points divide the interval [0,1] on infinite number of subintervals. Next
generate n uniform samples Uy, ..., U; on [0, 1] and define X; = jif U; € [Fj_1, F}).

This procedure is effective but requires a construction of interval partition.
Our aim here is to describe an alternative approach which does not rely on interval
partition at all.

Consecutive construction of a sample

We shall describe the sample X1,..., X, in terms of counts

Nnj:#{le{l,,n}XZ:j}, ]EN (4)
For many characteristics of the sample this is a sufficient statistics, because given
distinct sample values 1 < x7 < --- < xp and counts vy, ..., v of these values, so
that

Nypw, =vifori=1,...,k, and N,.,; =0for j & {z1,...,z1},

each particular sample with these counts appears with the probability (V1 " Vk) -
A notation for cumulative sums of counts will be also useful:
1>
Note that S,,.1 = n.
Introduce binomial moments

pj(n,m) = EHF (1 — H;)™. (6)
Then the sample can be constructed by the following procedure.

Theorem 1. Suppose that for we have already generated first n = 0,1,... values
of a sample which have counts (N,.;) as in (4). Then in order to learn a value of
X411 one should perform a sequence of choices whether X,,.+1 = j, forj =1,2,...,
with the probability to stop at j
— 4 ). > 4 :Mj(Nn1j+17SN?j)

P[Xn+1 = jl[(Nn:i)ien, Xn+1 > ] /Jj(Nn:j; Sn:j) . (7)
For a RAM subject to assumptions (3) this sequence stops at finite step almost
surely.
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This consecutive construction works best when there are explicit formulas for
the moments (6). This is the case when H; have beta distribution, as in the GEM
model [4].
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Factorial Polynomials in Computer Algebra Prob-
lems Related to Symbolic Summation

Eugene V. Zima

Abstract. We consider a natural succinct representation for factorial polyno-
mials along with the set of low complexity lazy manipulation and evaluation
rules. This leads to immediate improvements of the worst case running-time
complexity of many basic steps in standard algorithms for indefinite and def-
inite summation. Applications of this technique to computation of rational
normal forms and anti-differences of hypergeometric terms is discussed along
with a prototype Maple implementation.

Introduction

One of important intermediate representations arising in algorithms of symbolic
summation is the Gosper-Petkovsek form of a rational function [1, 3] The modern
term for this representation is Polynomial Normal Form (PNF for short [1]). One
of the problems with PNF is that the degree of one of the polynomials forming
the PNF can be exponential in the size of the numerator and the denominator of
the input rational function. This together with the fact that the degree of PNF
drives the running time complexity of summation algorithms directly influences
efficiency of standard summation algorithms in computer algebra systems.

This contribution is based on very simple observation that PNF' can be repre-
sented and manipulated succinctly and lazily, reducing the running time complex-
ity of standard tasks involved in algorithms of symbolic summation. This succinct
representation is natural, in a sense that it is explicit, as opposed to the idea of
implicit representation described in [2].

1. Preliminaries

Let K be a field of characteristic zero, x — an independent variable, ¥ — the shift
operator with respect to x, i.e., Ef(x) = f(z + 1) for an arbitrary f(z). Consider
R € K(z). If z € K and monic polynomials A, B, C € K[x] satisfy

(ii) ALE*B for all k € N,

then (z, A, B,C) is a polynomial normallsjgprm (PNF) of R. If in addition,
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(ifi) ALC and BLEC,
then (z, A, B,C) is a strict (PNF) of R (see [1] for details).
For example, for the rational function %4_0100 PNF is

1,1,1,(z+999) - (z+998) - (. +997)----- (x+2) - (x+1),

with polynomial C' of degree 999.

An important notion widely used in the context of algorithmic summation is
the dispersion set of polynomials p(x) and ¢(x), which is the set of positive integers
h such that deg(ged(p(x + h),q(x))) > 0. Another important notion is the largest
element of the dispersion set known as the dispersion. One more piece of standard
terminology required here is the notion of shift equivalence of polynomials: two
polynomials u(x),v(x) € K[z] are shift equivalent if there exists h € Z, such
that u(x + h) = v(z). Finally, following [4| define the factorial polynomial (a
generalization of the falling factorial) for p(x) € K|z| as

[p(z)], = p(x) -plx—1)-...-p(x —k+1) (1)

for £ > 0 and [p(x)], = 1. Observe, that factorial polynomials naturally appear in
the last component of PNF, assuming that the dispersion of the numerator and
denominator of a given rational function is nonzero.

2. Succinct representation of factorial polynomials and lazy
manipulation rules

We first note, that the left hand side of (1) offers succinct (most compact) repre-
sentation of the product in the right hand side for large values of k, as it requires
O©(log k) bits to represent the polynomial p(x)-p(x —1)-... -p(x —k+ 1) assuming
the degree of p(z) is fixed. The same polynomial would require ©(klog k) bits if

(z410)%(2 2+29) . .
2D Gat1)’ the PNF in succinct

represented as in [2]. For example, for R = €
form is

27
<1/5,x~|— 10,2 4+ 1/5, [ + 9], lx—l— ?1 ) :
15

which is much shorter compared to the expanded representation of the degree 24
polynomial C'. Factorial polynomials satisfy many obvious identities, which capture
their multiplicative nature and allow manipulate them without expanding. We list
only few of them for illustration purposes:

()], = [p(@)],_y Pl —k+1), [plx+1)], =plx+1)-[p),_,, fork>0,
[p1(x) - p2()];, = [p1(2)],, [p2(2)], etc.

Based on these it is easy to implement lazy evaluation rules, such as for example,

A fp@))y £ B (e + D], = [A-plgegh+ ) £ B plz+ D] p@) ;. (2)
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which holds for arbitrary expressions A and B. Another set of rules involves com-
putation of ged and cancelations. For example, given natural h, k, and [:

1 if1—h<0,
[P(%)] nink,1—ny otherwise.

The ultimate goal of lazy manipulation rules is to avoid complete expansion
of the involved factorial polynomials as much as possible.

ged([p(z)]y, , [p(x + R)];) = {

3. Applications

The natural succinct representation together with above mentioned rules offer
immediate improvement to the worst case running-time complexity of many basic
steps in standard algorithms for indefinite and definite summation.

3.1. Rational Normal Forms

The notion of Rational Normal Form (RNF) was introduced in the context of
hypergeometric summation (see [1] for the definition). The main steps in compu-
tation of RNF for a given rational function R € K(z) involve construction of two
PNFs, computation of ged, and divisions:

(z,a,b,c) := PolynomialNormalForm(R,n);

(z1,a1,bl,cl) := PolynomialNormalForm(b/a,n);

g := gcd(c,cl);

return (z,bl,al,c/g,cl/g)
The gain from using succinct representation is transparent from the following ex-
ample: for R = % the first call to PolynomialNormalForm produces
(1,2, 2 + 1003, [z + 999]49,) With polynomial ¢ of degree 997, the second call pro-
duces (1,1, 1, [z 4+ 1002}, 4,3) with polynomial cl of degree 1003, and gecd(c, cl) =
[z 4+ 999]49,. The RNF for R is

(1,1,1,1, (x + 1001) (x + 1002) (x + 1) (x + 2) = (x + 1000)),

with most of the terms from PNFs cancelled. Our prototype produces this result
in 0.012 seconds, while standard Maple implementation requires 3.5 second on the
same computer.

3.2. Gosper algorithm for summable hypergeometric terms

Recall that a nonzero expression F'(z) is called a hypergeometric term over K
if there exists a rational function r(x) € K(z) such that F(x + 1)/F(x) = r(x).
Usually r(z) is called the rational certificate of F'(x). The problem of indefinite hy-
pergeometric summation (anti-differencing) is: given a hypergeometric term F'(z)
to find a hypergeometric term G(x), which satisfies the first order linear difference
equation

(B —1G(x) = F(z). (3)
If found, write ) F(x) = G(x) + ¢, W]?%e c is an arbitrary constant.
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In [3] Gosper described a decision procedure, which starts with convert-
ing the rational certificate of the given summand to the Gosper-Petkovsek form
(z, A, B,C) reducing the search for the sum to the search of a polynomial y(z)
solving the key equation:

. A(z)y(r +1) = Bz — y(z) = C(x). (4)
If y(z) is found, then Bz — 1)y(x)
G(z) = F(x) ) : (5)

Sometimes the polynomial C'(x) from (4) is called the universal denominator. One
well-known problem with Gosper’s algorithm is that the universal denominator
can have pessimistically large degree (i.e., C(z) and y(x) can have very large
degree common factor, which will cancel after substituting the solution y(z) into
(5)). This in turn can lead to the exponential dependency of the running time on
the size of the input, even when input and output is small. Using the succinct
representation of PNF along with multiplicative properties of the solution of (5)
and of the factorial polynomials it is possible to remove extraneous terms in this
universal denominator before solving the key equation. This leads to improvements
in the running time complexity of Gosper’s algorithm in case of summable non-
rational hypergeometric summands with large dispersion of the rational certificate.

Implementations of all the above mentioned techniques in Maple are com-
pared to standard Maple summation tools and show not only theoretical but also
practical improvements.
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