The close relation between border and Pommaret marked bases

Cristina Bertone and Francesca Cioffi

Abstract. Given a finite order ideal \mathcal{O} , we investigate border and Pommaret marked sets related to this order ideal. We use the framework of reduction structures given in [3].

First, we prove that a marked set B on the border of \mathcal{O} is a basis if and only if the marked set on the Pommaret basis of the complementary ideal of \mathcal{O} contained in B is a basis and generates the same ideal as B.

As a byproduct, using a functorial description of border and Pommaret marked bases, we obtain that the scheme parameterizing marked bases on the border of $\mathcal O$ and the scheme parameterizing marked bases on the Pommaret basis of the complementary ideal of $\mathcal O$ are isomorphic. We also explicitly construct such an isomorphism.

Introduction

Consider the variables x_1, \ldots, x_n , with $x_1 < \cdots < x_n$, the set \mathbb{T} containing the terms in the variables x_1, \ldots, x_n and the polynomial ring $R_A := A[x_1, \ldots, x_n]$, being A a Noetherian algebra over a field K with unit 1_K .

If $\mathcal{O} \subset \mathbb{T}$ is a finite order ideal, we can define a set $F \subset R_A$ of monic marked polynomials whose *head terms* are the *border of* \mathcal{O} , $\partial \mathcal{O}$, and study the conditions ensuring that F is a $\partial \mathcal{O}$ -marked basis, i.e. $(F) \oplus \langle \mathcal{O} \rangle_A = R_A$, where $\langle \mathcal{O} \rangle_A$ is the A-module generated by \mathcal{O} .

Border marked bases (border bases in the literature) were first introduced in [9] and investigated from a numerical point of view because of their stability with respect to perturbation of the coefficients [10, 11]. Border bases have also attracted interest from an algebraic point of view [7, Section 6.4], also because given a finite order ideal \mathcal{O} , the border bases on \mathcal{O} parameterize an open subset of a Hilbert scheme (see also [5, 6]).

Since every Artinian monomial ideal in R_K has a *Pommaret basis*, given a finite order ideal \mathcal{O} , we can consider the Pommaret basis $\mathcal{P}_{\mathcal{O}}$ of the monomial ideal

generated by $\mathbb{T} \setminus \mathcal{O}$ and construct monic marked sets and bases whose head terms form $\mathcal{P}_{\mathcal{O}}$.

Marked bases on strongly stable ideals were first introduced in [4] with the aim to parameterize open subsets of a Hilbert scheme, in order to study it locally. This kind of basis does not need any finiteness assumption on the underlying order ideal. In [1] marked bases were considered only in the case of homogeneous polynomials, but in [2] also non-homogeneous marked bases over monomial ideals having a Pommaret basis were considered, in order to have more efficient computational techniques for the homogeneous case.

The goal of our work is comparing marked sets (and bases) on the border $\partial \mathcal{O}$ of \mathcal{O} and on the Pommaret basis $\mathcal{P}_{\mathcal{O}}$ of the ideal $(\mathbb{T} \setminus \mathcal{O})$. To this aim we use the framework of reduction structures [3], and a functorial approach to study the schemes parameterizing these two different bases. The monicity of the marked sets we consider is crucial for the use of functors.

Observing that a set B of marked polynomials on $\partial \mathcal{O}$ always contains a set P of marked polynomials on $\mathcal{P}_{\mathcal{O}}$, we prove that B is a $\partial \mathcal{O}$ -marked basis if and only if P is a $\mathcal{P}_{\mathcal{O}}$ -marked basis and generates the same ideal as B.

As a byproduct, using a functorial description of border and Pommaret marked bases, we obtain that the scheme parameterizing $\partial \mathcal{O}$ -marked bases and the scheme parameterizing $\mathcal{P}_{\mathcal{O}}$ -marked bases are isomorphic. We also explicitly construct such an isomorphism.

1. Framework

If σ is a term in \mathbb{T} , we denote by $\min(\sigma)$ the smallest variable dividing σ . A set \mathcal{O} of terms in \mathbb{T} is called an *order ideal* if for every $\sigma \in \mathbb{T}$ and every $\tau \in \mathcal{O}$, if σ divides τ , then σ belongs to \mathcal{O} .

Given a finite order ideal \mathcal{O} , the border of \mathcal{O} is $\partial \mathcal{O} := \{x_i \cdot \tau \mid \tau \in \mathcal{O}, i \in \{1, \dots, n\}\} \setminus \mathcal{O}$ [7, Definition 6.4.4], and the Pommaret basis of $\mathbb{T} \setminus \mathcal{O}$ is $\mathcal{P}_{\mathcal{O}} = \{\sigma \in \mathbb{T} \setminus \mathcal{O} | \sigma / \min(\sigma) \in \mathcal{O}\}$. Observe that $\mathcal{P}_{\mathcal{O}} \subset \partial \mathcal{O}$.

Definition 1. [3, Definition 3.1] A reduction structure \mathcal{J} in \mathbb{T} is a 3-uple $\mathcal{J} := \{\mathcal{H}, \mathcal{L} := \{\mathcal{L}_{\alpha} \mid \alpha \in \mathcal{H}\}, \mathcal{T} := \{\mathcal{T}_{\alpha} \mid \alpha \in \mathcal{H}\}\}$ where: $\mathcal{H} \subseteq \mathbb{T}$ is a finite set of terms; for every $\alpha \in \mathcal{H}$, $\mathcal{T}_{\alpha} \subseteq \mathbb{T}$ is an order ideal, such that $\bigcup_{\alpha \in \mathcal{H}} \{\tau \alpha \mid \tau \in \mathcal{T}_{\alpha}\} = (\mathcal{H})$; for every $\alpha \in \mathcal{H}$, \mathcal{L}_{α} is a finite subset of $\mathbb{T} \setminus \{\tau \alpha \mid \tau \in \mathcal{T}_{\alpha}\}$.

A marked polynomial is a polynomial $f \in R_A$ with a specified term of Supp(f), the head term of f, denoted by Ht(f), which appears in f with coefficient 1_K .

Definition 2. [3, Definitions 4.2 and 4.3] Given a reduction structure $\mathcal{J} = (\mathcal{H}, \mathcal{L}, \mathcal{T})$, a set F of exactly $|\mathcal{H}|$ marked polynomials in R_A is called a \mathcal{H} -marked set if, for every $\alpha \in \mathcal{H}$, there is $f_{\alpha} \in F$ with $\operatorname{Ht}(f_{\alpha}) = \alpha$ and $\operatorname{Supp}(f) \subseteq \mathcal{L}_{\alpha}$.

Let $\mathcal{O}_{\mathcal{H}}$ be the order ideal given by the terms of \mathbb{T} outside the ideal generated by \mathcal{H} . A \mathcal{H} -marked set F is called a \mathcal{H} -marked basis if $(F) \oplus \langle \mathcal{O}_{\mathcal{H}} \rangle_A = R_A$.

From now on, let the terms of the border $\partial \mathcal{O}$ be ordered by increasing degree (terms of the same degree are ordered arbitrarily) and labelled coherently: for every $\beta_i, \beta_j \in \partial \mathcal{O}$, if i < j then $\beta_i < \beta_j$.

Definition 3. Let $\mathcal{O} \subset \mathbb{T}$ be a finite order ideal.

The Pommaret reduction structure $\mathcal{J}_{\mathcal{P}}$ is the reduction structure with $\mathcal{H} = \mathcal{P}_{\mathcal{O}}$ and, for every $\alpha \in \mathcal{P}_{\mathcal{O}}$, $\mathcal{L}_{\alpha} = \mathcal{O}$ and $\mathcal{T}_{\alpha} = \mathbb{T} \cap K[x_1, \dots, \min(\alpha)]$.

The border reduction structure $\mathcal{J}_{\partial \mathcal{O}}$ is the reduction structure with $\mathcal{H} = \partial \mathcal{O}$ and, for every $\beta_i \in \partial \mathcal{O}$, $\mathcal{L}_{\beta_i} = \mathcal{O}$ and $\mathcal{T}_{\beta_i} = \{ \mu \in \mathbb{T} \mid \forall j > i, \beta_j \text{ does not divide } \beta_i \mu \}$.

For every reduction structure $\mathcal{J} = (\mathcal{H}, \mathcal{L}, \mathcal{T})$ and every \mathcal{H} -marked set F, it is possible to define a reduction relation on polynomials in R_A , that we denote by $\to_{F\mathcal{J}}$. If B (resp. P) is a $\partial \mathcal{O}$ -marked set (resp. a $\mathcal{P}_{\mathcal{O}}$ -marked set), for every $f \in R_A$ there is $h_B \in \langle \mathcal{O} \rangle_A$ (resp. $h_P \in \langle \mathcal{O} \rangle_A$) such that $f \to_{B\mathcal{J}_{\mathcal{O}}} h_B$ (resp. $f \to_{P\mathcal{J}_{\mathcal{P}_{\mathcal{O}}}} h_P$). Observe that in general $h_B \neq h_P$. In particular, both the border reduction and the Pommaret reduction structures give Noetherian and confluent reduction relations. These properties ensure that $(B) + \langle \mathcal{O} \rangle_A = (P) + \langle \mathcal{O} \rangle_A = R_A$.

2. Main results

Theorem 4. Let $\mathcal{O} \subset \mathbb{T}$ be a finite order ideal. Let B be a $\partial \mathcal{O}$ -marked set in R_A and we denote by P the $\mathcal{P}_{\mathcal{O}}$ -marked set contained in B. Then we have

B is a $\partial \mathcal{O}$ -marked basis $\Leftrightarrow P$ is a $\mathcal{P}_{\mathcal{O}}$ -marked basis and (B) = (P).

Definition 5. [3, Appendix A] Let $\mathcal{O} \subset \mathbb{T}$ be a finite order ideal and let $\mathcal{J} = (\mathcal{H}, \mathcal{L}, \mathcal{T})$ be a reduction structure with $(\mathcal{H}) = \mathbb{T} \setminus \mathcal{O}$. We consider the functor

$$\mathcal{M}b_{\mathcal{J}}: \text{ Noeth-}k\text{-Alg }\longrightarrow \text{ Sets},$$

that associates to every Noetherian k-Algebra A the set $\mathcal{M}b_{\mathcal{J}}(A)$ consisting of all the ideals $I \subset R_A$ generated by a \mathcal{H} -marked basis, and to every morphism of Noetherian k-algebras $\phi: A \to A'$ the morphism $\mathcal{M}b_{\mathcal{J}}(\phi): \mathcal{M}b_{\mathcal{J}}(A) \to \mathcal{M}b_{\mathcal{J}}(A')$ that operates in the following natural way:

$$\mathcal{M}b_{\mathcal{J}}(\phi)(I) = I \otimes_A A'.$$

Remark 6. The monicity of marked sets and bases guarantees that marked set and bases are preserved by extension of scalars (see also [3, Lemmas A.1 and A.2]).

If $|\mathcal{O}| = \ell$ and $|\partial \mathcal{O}| = m$, we define $C := \{C_{i,j}\}_{1 \leq i \leq m, 1 \leq j \leq \ell}$. The generic $\partial \mathcal{O}$ -marked set [8, Definition 3.1] is the set \mathscr{B} of marked polynomials $\{g_1, \ldots, g_m\} \subset R_{K[C]}$ with $g_i = \tau_i - \sum_{j=1}^{\ell} C_{ij} \sigma_j$.

The set \mathscr{B} contains the generic $\mathcal{P}_{\mathcal{O}}$ -marked set \mathscr{P} . We denote by \tilde{C} the set of parameters not appearing in \mathscr{P} . By Buchberger criteria for $\partial \mathcal{O}$ -marked bases [7, Proposition 6.4.34] and for $\mathcal{P}_{\mathcal{O}}$ -marked bases [2, Proposition 5.6], it is possible to prove that the functor $\mathcal{M}b_{\mathcal{J}_{\partial\mathcal{O}}}$ (resp. $\mathcal{M}b_{\mathcal{J}_{\mathcal{P}_{\mathcal{O}}}}$) is the functor of points of $\operatorname{Spec}(K[C]/\mathfrak{B})$ (resp. $\operatorname{Spec}(K[C]/\mathfrak{P})$), where \mathfrak{B} (resp. \mathfrak{P}) is generated by a

finite set of polynomials in K[C] (resp. $K[C \setminus \tilde{C}]$) explicitly computed by $\to_{\mathscr{B},\mathcal{J}_{\partial\mathcal{O}}}$ (resp. $\to_{\mathscr{P}\mathcal{J}_{\mathcal{P}_{\mathcal{O}}}}$). Thanks to Theorem 4, we can prove the following.

Theorem 7.

- 1. The schemes $\operatorname{Spec}(K[C]/\mathfrak{B})$ and $\operatorname{Spec}(K[C \setminus \tilde{C}]/\mathfrak{P})$ are isomorphic;
- 2. there is a isomorphism $\psi : \operatorname{Spec}(K[C]/\mathfrak{B}) \to \operatorname{Spec}(K[C \setminus \tilde{C}]/\mathfrak{P})$ defined by computing for every $\beta \in \partial \mathcal{O} \setminus \mathcal{P}_{\mathcal{O}}$ the polynomial $h_{\beta} \in \langle \mathcal{O} \rangle_{A}$ such that $\beta \to_{\mathscr{P}_{\mathcal{P}_{\mathcal{O}}}} h_{\beta}$.

References

- [1] C. Bertone, F. Cioffi, P. Lella, and M. Roggero, Upgraded methods for the effective computation of marked schemes on a strongly stable ideal, J. Symbolic Comput., 50, (2013).
- [2] C. Bertone, F. Cioffi, and M. Roggero, *Macaulay-like marked bases*, J. Algebra Appl., 16, (2017), no.5.
- [3] M. Ceria, T. Mora, and M. Roggero, A general framework for Noetherian well ordered polynomial reductions, J. Symbolic Comput., 95, (2019).
- [4] F. Cioffi, and M. Roggero, Flat families by strongly stable ideals and a generalization of Gröbner bases, J. Symbolic Comput., 46, (2011), no.9.
- [5] M. E. Huibregtse, Some syzygies of the generators of the ideal of a border basis scheme, Collect. Math., 62, (2011), no.3.
- [6] M. Lederer, Gröbner strata in the Hilbert scheme of points, J. Commut. Algebra, 3, (2011), no.3.
- [7] M. Kreuzer, and L. Robbiano, Computational commutative algebra. 2, Springer-Verlag, Berlin, (2005).
- [8] M. Kreuzer, and L. Robbiano, Deformations of border bases, Collect. Math., 59, (2008), no.3.
- [9] M.G. Marinari, H.M. Möller, and T. Mora, Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput. 4, (1993), no.2.
- [10] B. Mourrain, A new criterion for normal form algorithms, Lecture Notes in Comput. Sci.,vol.1719,Springer, Berlin, (1999).
- [11] H. J. Stetter, *Numerical polynomial algebra*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2004).

Cristina Bertone

Dipartimento di Matematica "G. Peano", Università di Torino, Italy e-mail: cristina.bertone@unito.it

Francesca Cioffi

Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli Federico II, Italy

e-mail: cioffifr@unina.it