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Let us consider generalized register machines over a field of characteristic

zero

(K,0,1,+,−,×)

They are closely related to the machines over reals defined by L. Blum,

M. Shub, and S. Smale (1989).

Each register contains an element of K.

There exist index registers containing nonnegative integers.

The running time is said polynomial, when the total number of operations

performed before the machine halts is bounded by a polynomial in the

number of registers occupied by the input.

Initially, this number is placed in the zeroth index register.

If a polynomial serves as an input, then its coefficients are written into

registers. For a sparse polynomial, many registers contain zeros.

A hypersurface in P
n is the vanishing locus of a form, i.e., a homogeneous

polynomial in n+1 variables.

It is hard to recognize whether a given cubic hypersurface is smooth.



For a smooth plane curve of order d, in accordance with the Plücker

formulae, there exist exactly d2− d tangent straight lines passing through

the general point of the plane.

Contrariwise, if the exist d2 − d different tangent straight lines passing

through a point, then the plane curve is smooth.

In case d = 2, there are two tangent straight lines to a conic section. But

in general case, there is no tangent straight line to any singular quadric,

which is a pair of straight lines. There is only double straight line passing

through the double point.

Let us consider some multidimensional generalization of this result.



Definition

For n ≥ 2, let us consider a square-free form f(x0, . . . , xn) of degree

d ≥ 2. Let us fix a point U with homogeneous coordinates (u0 : . . . : un).

Every straight line passing through the point U consists of points with

homogeneous coordinates ((x0− u0)t+ u0s : · · · : (xn− un)t+ uns), where

(s : t) are homogeneous coordinates inside the line. The restriction of the

form f is a binary form denoted by r(s, t).

Let us denote by D[f, U ] the discriminant of the binary form r(s, t).

If x0 = 1, then the discriminant is a inhomogeneous polynomial in affine

coordinates xk. In the general case, its degree is equal to d2 − d.

If a straight line either is tangent to the hypersurface or passes through a

singular point, then the discriminant of the form r(t, s) vanishes. So, if the

point U is not any singular point of the hypersurface, then the polynomial

D[f, U ](x1, . . . , xn) defines a cone with U as a vertex. If U is singular, then

D[f, U ] vanishes identically.



Over the field of real numbers, a section of the cone that is defined

by D[f, U ](x1, . . . , xn) = 0 is called the silhouette. Let us use the same

notation over an arbitrary field.

In the general case, the polynomial D[f, U ](x1, . . . , xn) is not homogeneous.

So, we use affine space to define the silhouette.

One can define it in a projectively invariant way. A projective straight

line passing through the point U corresponds to a two-dimensional linear

space. So, the silhouette is naturally embedded into the Grassmannian.



The set of polynomials of the type D[f, U ] for all points U generates

a linear subspace Wf of the ambient linear space of all inhomogeneous

polynomials of degree d2−d in n variables. The dimension of the ambient

linear space is equal to

w(n, d) =
(n+ d2 − d)!

n!(d2 − d)!
.

Theorem. For every irreducible form f , the dimension dimWf is projectively

invariant.

Remark. If a square-free form f is reducible, then any irreducible factor

must not vanish at infinity.

Theorem. If d ≥ 3 and n is sufficiently large, then dimWf < w(n, d), that

is, Wf is a proper subspace of the ambient linear space.

Theorem. If the rank of a quadratic form f is equal to n, then the equality

dimWf = w(n,2) holds.



Theorem (2017). For given n and d, the dimension dimWf considered

as a function of coefficients of f is lower semi-continuous.

Corollary. If there exists a form f(x0, . . . , xn) of degree d such that

dimWf = w(n, d), then for almost every form f(x0, . . . , xn) of degree d,

the equality dimWf = w(n, d) holds too.

Theorem (2017). Given a square-free polynomial f(x1, . . . , xn). In the

expansion of the polynomial D[f, U ] in powers of coordinates of the point

U , each coefficient belongs to the linear subspace Wf . These polynomials

in variables x1,. . . , xn span whole linear subspace Wf .

Corollary. There exists a polynomial time algorithm to compute the

dimension of the linear subspace Wf .



Corollary. There exists a polynomial time algorithm to compute the

dimension of the linear subspace Wf .

It is sufficient to calculate the rank of a matrix whose order equals w(n, d).

It requires O(wω) multiplications, where ω denotes the matrix multiplication

exponent (Schönhage A. (1973) Unitäre Transformationen großer Matrizen,

Numerische Mathematik, 20, 409–417).

In small dimensions, the rank can be calculated with computer algebra

system software. With Maple, one can use with(LinearAlgebra) : Rank().

With MathPartner, one can calculate the echelon form of a matrix.

For the manual how to compute dimWf , refer to:

Seliverstov A.V. (2017) On tangent lines to affine hypersurfaces [in Russian],

Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.

Komp’yuternye Nauki, vol. 27, no. 2, pp. 248–256.

https://doi.org/10.20537/vm170208



Example

The vanishing locus of the polynomial f = xy +1 is an affine hyperbola.

Let us denote affine coordinates of a point U by u and v. Expansion of

the polynomial D[f, U ] is equal to

D[f, U ] = y2u2 − (2xy +4)uv +4yu+ x2v2 +4xv − 4xy.

The linear subspace Wf coincides with the ambient space of all bivariate

polynomials of degree at most two.

Its dimension is dimWf = 6. Its basis consists of polynomials:

Duu = y2, Duv = −2xy − 4, Dvv = x2, Du = 4y, Dv = 4x, D1 = −4xy.



We have computed dimWf for certain plane curves (n = 2). In this case,

the linear subspace Wf can be improper. But it is small for some curves.

d 2 3 4 5 6 7 8 9 10

w(2, d) 6 28 91 231 496 946 1653 2701 4186

dimWF2
6 26 82 207 446 856 1506 2477 3862

where F2 = xd0 + xd1 + xd2.

Theorem. If f(x0, x1, x2) defines a singular plane curve, then the strict

inequality dimWf < w(2, d) holds.

For almost every f of degree d ≤ 7, the equality dimWf = w(2, d) holds.

For all d ≤ 7, the equality

max
f(x0,x1,x2)

dimWf = w(2, d)

holds. In particular, the equality holds at forms of the type

f = xd0 + xd1 + xd2 + (x0 + x1 + x2)
d

We guess that it holds for every larger degree too. But it is hard to verify

because, for d=7, the running time is approximately 11 hours.



Let us consider cubic forms of the Fermat type

Fn = x30 + · · ·+ x3n.

The polynomial D[Fn, U ](x1, . . . , xn) is equal to the discriminant of a binary

form of the type at3 + bt2s + pts2 + qs3 whose coefficients are sums of

univariate polynomials, that is,

a = a1(x1) + · · ·+ an(xn)
b = b1(x1) + · · ·+ bn(xn)
p = p0 + p1x1 + · · ·+ pnxn

and q is a constant. So, every monomial of

D[Fn, U ] = b2p2 − 4ap3 − 4b3q − 27a2q2 +18abpq

depends on at most four variables. Thus, dimWFn
= O(n4).

For n ≤ 9, the equation dimWFn
= 1

4n
4 + 5

6n
3 + 9

4n
2 + 8

3n+1 holds.

n 2 3 4 5 6 7 8 9

dimWFn
26 72 165 331 602 1016 1617 2455



We have also computed dimWf for certain cubic hypersurfaces.

For n ≤ 3, this result found by symbolic computations with parameters,

where every parameter can be considered as a transcendental number.

For n ≥ 4, dimWf was only computed for certain cubic forms. They

provide the lower bound on the maximum value of dimWf for given n.

For cubic forms f(x0, . . . , xn), we guess that the maximum dimension

max
f

dimWf = n+dimWFn
=

1

12
(n+1)(3n3 +7n2 +20n+12)

n 2 3 4 5 6 7 8 9

w(n,3) 28 84 210 462 924 1716 3003 5005

maxf dimWf 28 75 ≥ 169 ≥ 336 ≥ 608 ≥ 1023 ≥ 1625

dimWFn
26 72 165 331 602 1016 1617 2455

Remark. For quadratic forms, the equalities maxf dimWf = dimWFn

hold. For quartic and quintic forms, the difference between maxf dimWf

and dimWFn
is larger than n.



Let us consider cubic curves. In the general case, dimWf = 28 except the

Fermat type curves and all singular curves. We computed the determinant

of a matrix composed by coefficients of polynomials generating the linear

space Wf . For the Weierstrass normal form f = x22x0 + x31 + px1x
2
0 + qx30,

the determinant is proportionate to the expression p4(4p3 +27q2)8.

If p = 0 and q 6= 0, then the curve is projectively equivalent to a curve of

the Fermat type. If 4p3 + 27q2 = 0, then the curve is singular, else it is

smooth.

For the Fermat cubic curve, dimWF2
= 26.

In this case, the Hessian curve is the union of three straight lines.

For an irreducible cubic curve with a node, dimWf = 25.

For a cubic curve with a cusp, dimWf = 21.

Therefore, one can distinguish between nodal and cuspidal curves.



The general cubic surface is projectively equivalent to a surface defined

by x30+x31+x32+x33+ p0x1x2x3+ p1x0x2x3+ p2x0x1x3+ p3x0x1x2, where

p0, p1, p2, and p3 are independent parameters.

Wakeford E.K. (1920) On canonical forms, Proceedings of the London

Mathematical Society (2), vol. 18, no. 1, pp. 403–410.

Emch A. (1931) On a new normal form of the general cubic surface,

American Journal of Mathematics, vol. 53, no. 4, pp. 902–910.

A cyclic cubic surface is projectively equivalent to a surface defined by a

form of the type x30 + x31 + x32 + x33 + px1x2x3, where p is a parameter.

For almost every value of p, the surface is smooth.

There exists a Galois cover of degree 3 over projective plane.

A smooth cubic surface is cyclic iff its Hessian surface contains a plane.

The Hessian surface of the Fermat cubic (when p = 0) is simply the union

of four planes since it has four cyclic structures.

Dolgachev I., Duncan A. (2019) Automorphisms of cubic surfaces in

positive characteristic, Izvestiya: Mathematics, vol. 83, no. 3, pp. 424–

500. https://doi.org/10.1070/IM8803



For the general cubic surface, dimWf = 75.

For the general cyclic cubic surface, dimWf = 74.

For the Fermat cubic surface, dimWF3
= 72.

So, if the Hessian surface contains a plane, then dimWf is small.

But for some singular surfaces, the equality dimWf = 75 holds too.

For example, it holds for f = x30 + px20x1 + x31 + x0x
2
2 + (x20 + x21 + x22)x3,

where p is transcendental; the point (0 : 0 : 0 : 1) is singular.

Therefore, the approach does not allow one to decide whether a given

cubic surface is smooth.

If f = x30 + px20x1 + x31 + x0x
2
2 + x1x2x3, where p is transcendental, then

dimWf = 73; the point (0 : 0 : 0 : 1) is singular too.

If f = x30 + px20x1 + x31 + x0x
2
2 + x20x3, where p is transcendental, then

dimWf = 48; the point (0 : 0 : 0 : 1) is singular too.



If a cubic hypersurface is the projective closure of the graph of a

polynomial, then it contains a singular point at infinity. The singular point

is not any ordinary double point.

For cubic forms f(x0, . . . , xn), we guess that the maximum dimension

max
f

dimWf = n+dimWFn

But for cubic forms of the type g = f(x0, . . . , xn−1) + x20xn, we guess

max
g

dimWg ≤ n− 2+ dimWFn

Let H2 = x30 + x31 + x20x2. For n ≥ 3, let Hn denote the cubic form

x30 + · · ·+ x3n−1 + x0x1x2 + x1x2x3 + · · ·+ xn−2xn−1x0 + x20xn

n 2 3 4 5 6 7 8

maxf dimWf 28 75 ≥ 169 ≥ 336 ≥ 608 ≥ 1023 ≥ 1625

dimWHn
21 64 159 334 606 1021 1623



Conjecture. For every cubic form g with reducible Hessian, the inequality

holds

dimWg < max
f

dimWf

Moreover, the more factors exists in Hessian, the more gap is between

two values dimWg and maxf dimWf .

In particular, it holds for curves and surfaces as well as for all Fermat type

hypersurfaces in sufficiently small dimensions.

For every cubic form of the type g = f(x0, . . . , xn−1) + x20xn, its Hessian

is reducible too.



For quartics, these calculations are time-consuming.

If n = 2 or n = 3, then the linear subspace Wf can be improper. In these

cases, if f defines a singular curve or surface, then the strict inequality

dimWf < w(n,4) holds.

The table below contains dimWBn
for hypersurfaces with 2n singular

points, where

Bn =
n∑

k=1

(x2k − x20)
2.

n 2 3 4

w(n,4) 91 455 1820

maxf dimWf 91 455 ≥ 1792

dimWFn
82 374 1325

dimWBn
79 423 1740



For quintics, these calculations are time-consuming too.

If n = 2, then the linear subspace Wf can be improper. So, if f defines a

singular plane curve, then the strict inequality dimWf < w(2, 5) holds.

n 2 3

w(n,5) 231 1771

dimWFn
207 1467

where Fn = x50 + · · ·+ x5n.

Plane sextic, septic, octic, nonic, and decic curves have been considered

too, where F2 = xd0 + xd1 + xd2.

d 2 3 4 5 6 7 8 9 10

w(2, d) 6 28 91 231 496 946 1653 2701 4186

dimWF2
6 26 82 207 446 856 1506 2477 3862



Conclusion

The computational results show that one can easily verify smoothness of

almost every plane quartic curve as well as almost every quartic surface

in P
3 by means of computing dimWf . The method is also applicable to

other plane curves.

On the other hand, the same problem for cubic surfaces is hard enough

because the proposed projective invariant is useless in this case.

Nevertheless, one can recognize singularities of some types.

We also assume that our method allows us to recognize cubic hypersurfaces

with reducible Hessian in deterministic polynomial time.

The figures were made with the Surfer program

http://www.imaginary.org/program/surfer

Thank you!


