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Abstract. In 1999 V. Weispfenning presented a quantifier elimination proce-
dure for the elementary theory of the structure (R; 0,1, 4+, —, [], =, <,{n [},.cx )
where [] is the unary integer part operation, and therefore proved decidability
of this theory. For the integer divisibility relation z | y < Jz(Int(z)Ay = z-x)
on R, he proved undecidability of the elementary theory of the structure
(R;0,1,+, —,[],=,<,|) and that the theory does not admit quantifier elim-
ination. As a remark, Weispfenning asked whether the positive existential
theory of the same structure is decidable.

A decidability proof for this existential theory is the first result of this
note. We also sketch a proof of the fact that for every positive existential for-
mula of the first-order language with the signature <07 1,4, —, {c~}c€@ ,=, 7, J_>
there is an equivalent in the rationals Q quantifier-free formula of the same
language. Here ¢ is a unary functional symbol for multiplication by a rational
constant ¢ and x L y < Int(x) A Int(y) N GCD(z,y) = 1.

Introduction

Let Lp, 4 be the first-order language of the signature (0,1, +, —,=,<,2 [,3 [,4 |, ...).
V. Weispfenning [4] considered a natural generalization of Presburger Arithmetic
(PrA) and proved that after adjoining the unary integer part operation [] to the
signature of Lp,.4 (this extended language was named L'), for every positive ex-
istential formula we can construct an equivalent in the real numbers R positive
quantifier-free formula [4, Theorem 3.1]. As a corollary, we get decidability of the
elementary theory of the structure (R;0,1,+,—,[],=,<,2[,3[,4],...) and also a
characterization of the relations, definable in this structure.

If we introduce unary functional symbols c¢- for multiplication by rational
constants ¢, we get a quantifier elimination procedure for the elementary theory

of the structure <R; 0,1,+,—[,{c}ecq,= <>. The corresponding language was
named L” and let ¢” be the signature of this language. Then V. Weispfenning
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writes: «By way of contrast, quantifier elimination definitely breaks down if one
admits scalar multiplication by a real parameter or integer divisibility in the lan-
guage. In the latter case the elementary theory of real is in fact undecidabley.
Simultaneously with the integer divisibility = | y < 3z(Int(z) Ay = z - x) it was
also considered the relation x || y = Int(x) A Int(y) A x | y. For the structures
(R;0,1,4+,—,[],=,]) and (R;0,1,4+,—,[],=,]|) he proved undecidablity of the el-
ementary theories and decidability of the existential theory of the first structure
(it follows from the the Bel’tyukov-Lipshitz theorem [1, 2]). After this proof there
is a remark saying that «We do not know whether a corresponding theorem holds
in the analogous language L/, », where L/, is the first-order language of the
signature (0,1, 4, —,[], =, |). We prove that the theory is decidable in section 1.

If we assume that © 1 y = GCD(«,y) = 1, then for rational numbers = and y
their coprimeness means that these numbers are coprime integers. The elementary
theory of the structure (Q; o) admits quantifier elimination (see [4, Corollary 3.5]).
Extend o” by the coprimeness relation L and dis-equality #; exclude the order
relation and the integer part operation. Denote the resulting signature o, . In
section 2 we sketch the proof of the fact that for every positive existential L, -
formula there is an equivalent in Q quantifier-free L, -formula. Note that (Q; o)
has undecidable elementary theory as a corollary of the undecidability result for
the elementary theory of the structure (Z;0,1,+, —,=, L) proved by D. Richard
in [3].

1. One Weispfenning’s remark

Theorem 1. The ezistential theory of the structure (R;0,1,+,—,[],=,<,|) is de-
cidable.

Proof. To prove the theorem we reduce it to the decidable positive existential the-
ory of the structure (Q;0, 1, +, —, =, <,|). Its decidability follows from Bel’tyukov-
Lipshitz theorem on decidability of 3Th(Z;1,+, <, |). In the first step of the proof
we apply some syntactic transformations of a given formula. For example, using
the formula y = [£] z+ {£} 2 we can define x { y by a positive existential formula
in (R;0,1,4,—,=,<,|). Then we have to prove that this formula is true in R iff
it is true in Q.
Let the formula

o@= N a@=0A N\ L@la@r N a@ <0,

i=1..k i=k+1..1 i=l+1..m

be satisfiable in R, where 7 is a list of variables z1, ..., y; ¢;(Z) for i € [1..m] and
fj(@) for j € [k + 1..1] are linear polynomials with integer coefficients.

Suppose this formula is true for some real values ag,...,a,. Then let for
i = k+1..k" we have g;(a1, ...,an,) = 0and g; (o, ..., ) # 0 for every j € [K'+1..1].
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Now define the formula

Y@= N a@=0n A\ fi@a@r N\ org@<on N @)

i=1..k’ 1=k’+1..1 i=k’+1..1 1=l+1..m

where o; = 1if g;(a1, ..., ) < 0 and o; = —1if g; (a1, ..., ) >0 for i = k' +1..1.

Consider the system of linear equations with integer coefficients A ¢;(Z) =
i=1..k/
0. Let Ay + b be a solution set of the system for some rational matrix A, rational

vector b and fresh variables § = w1, ...,y:. Substitute Ay + b for T and get an
equisatisfiable over the reals system of linear inequalities and divisibilities with
rational coefficients

@= N F@la@r N\ oi-g@<on N G@ <o,

i=k'+1..1 i=k'+1..1 i=l+1..m

such that for every rational solution of ¢”(7) we can get a rational solution of
@' (T) and thus of p(T).

Let fi,...,0: be some real satisfying assignment of ¢”(7) Let also the real
numbers {1,71, ..., vs } for some s < t be a basis of the linear space over Q generated
by the reals {1, 51, ...,6;}. Each element §; is uniquely represented as ¢; o - 1 +
Ci1 M1+ ... +cis- s for ¢ = 1..t, where all ¢;; € Q. Define x;(21,...,25) =
Cio+Ci1z1+ ...+ ¢ sz for i = 1..t, substitute x;(z1, ..., z5) for y; in ¢”(7) and get
a new formula

¥(2) = ¢"(xa(2), - xe(2))-

Thus for every rational satisfying assignment of the formula (Z) one can get a
rational satisfying assignment of ¢” (%), and moreover ¥ (71, ...,s) holds.
Rewrite 9 (%) in the following form:

A F@a@A N\ G563 <0

i=1..0" i=1..m’

for some I’ < m’. Consider independently each divisibility f(z) | E(E) in ¢(Z) for
f(?) = ag+aiz1+...+aszs and non-zero polynomial :g:(E) =bg+biz1+...+bszs. We

will show that, actually, §(Z) is an integer multiple of f(?) and thus the divisibility
holds for every values of Z.

For some integer w we have w - f(y1,...,7s) = g(m,...,7s). Let v = 1,
then assuming that w - a;y; # b;y; for some i € [0..s], we get that v;(w - a; —
bi))= >, ;(bj —w-a;). But this is impossible since 1,71, ..., Vs are linearly

G=0.sAj#i
independent over Q.

Thus every solution of the subsystem of linear inequalities A g:Z(E) <
i=1..m/

0 with rational coefficients is also a solution of t(Z), and since the system is

consistent in R, there is some rational solution. O

<0,
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2. Integer divisibility on (Q and quantifier elimination

Theorem 2. For every positive existential L, -formula one can construct an equiv-
alent in Q quantifier-free L, -formula.

As GCD(x,y) = d < 5 L 4, we can consider linear polynomials with rational
coefficients in expressions of the form GCD(f(Z), (%)) = d, f(T) = 0 and f(z) # 0.
Elimination of an existential quantifier is based on the following lemma.

Lemma 1. For the system N\ GCD(a;,b; + x) = d; with a;,b;,d; € Q and
i€[l..m]
a; # 0, d; > 0 for every i € [l..m], we define for every prime p the integer

M, = n[zlax ]vp(di) and the index sets J, = {i € [1.m] : v,(d;) = M,} and I, =
i€[l..m

{ieJp : vy(a;) > M,}. Then the system has a solution in Q iff the following
conditions simultaneously hold:

(i) N dila

1€[1..m]

(i) N\ GCD(d;,dj) | b; — b;
i,7€[1..m]

(iii) N\ GCD(a;,dj,b; —b;) | d;
i,5€[1..m]

(iv) For every prime p < m and every I C I, such that |I| = p there are such
i,] € I, Z#] thatvp(bi—bj) > Mp.

In our case in place of a; and b; there will be some linear polynomials with
rational coefficients.

As a corollary, we get that the relation z f y is not positively existentially
definable in this structure as otherwise the theory Th(Q;0, 1,4+, —,=, 1) is decid-
able.

Conclusion

It is natural to ask for the following generalization of both Weispfenning’s main
theorem and Theorem 2. How the signature o = <O7 L,+,—, 1] {C'}ce@ =<, L>
can be extended with some predicates, positively existentially definable in (Q; o),

such that for every positive existential formula there is some equivalent in this
structure quantifier-free formula?
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