Integer divisibility on \mathbb{Q} , quantifier elimination and one Weispfenning's remark

Mikhail R. Starchak

Abstract. In 1999 V. Weispfenning presented a quantifier elimination procedure for the elementary theory of the structure $\langle \mathbb{R}; 0, 1, +, -, [], =, <, \{n \mid\}_{n \in \mathbb{N}} \rangle$, where [] is the unary integer part operation, and therefore proved decidability of this theory. For the integer divisibility relation $x \mid y \Leftrightarrow \exists z (Int(z) \land y = z \cdot x)$ on \mathbb{R} , he proved undecidability of the elementary theory of the structure $\langle \mathbb{R}; 0, 1, +, -, [], =, <, | \rangle$ and that the theory does not admit quantifier elimination. As a remark, Weispfenning asked whether the positive existential theory of the same structure is decidable.

A decidability proof for this existential theory is the first result of this note. We also sketch a proof of the fact that for every positive existential formula of the first-order language with the signature $\left\langle 0,1,+,-,\{c\cdot\}_{c\in\mathbb{Q}}\,,=,\neq,\perp\right\rangle$ there is an equivalent in the rationals \mathbb{Q} quantifier-free formula of the same language. Here $c\cdot$ is a unary functional symbol for multiplication by a rational constant c and $x\perp y\Leftrightarrow Int(x)\wedge Int(y)\wedge GCD(x,y)=1$.

Introduction

Let L_{PrA} be the first-order language of the signature $\langle 0, 1, +, -, =, <, 2 \mid, 3 \mid, 4 \mid, \ldots \rangle$. V. Weispfenning [4] considered a natural generalization of Presburger Arithmetic (PrA) and proved that after adjoining the unary integer part operation [] to the signature of L_{PrA} (this extended language was named L'), for every positive existential formula we can construct an equivalent in the real numbers \mathbb{R} positive quantifier-free formula [4, Theorem 3.1]. As a corollary, we get decidability of the elementary theory of the structure $\langle \mathbb{R}; 0, 1, +, -, [], =, <, 2 \mid, 3 \mid, 4 \mid, \ldots \rangle$ and also a characterization of the relations, definable in this structure.

If we introduce unary functional symbols c for multiplication by rational constants c, we get a quantifier elimination procedure for the elementary theory of the structure $\left\langle \mathbb{R}; 0, 1, +, -, [\,], \{c \cdot\}_{c \in \mathbb{Q}}, =, < \right\rangle$. The corresponding language was named L'' and let σ'' be the signature of this language. Then V. Weispfenning

writes: «By way of contrast, quantifier elimination definitely breaks down if one admits scalar multiplication by a real parameter or integer divisibility in the language. In the latter case the elementary theory of real is in fact undecidable». Simultaneously with the integer divisibility $x \mid y \Leftrightarrow \exists z (Int(z) \land y = z \cdot x)$ it was also considered the relation $x \parallel y \rightleftharpoons Int(x) \land Int(y) \land x \mid y$. For the structures $\langle \mathbb{R}; 0, 1, +, -, [], =, | \rangle$ and $\langle \mathbb{R}; 0, 1, +, -, [], =, | \rangle$ he proved undecidablity of the elementary theories and decidability of the existential theory of the first structure (it follows from the the Bel'tyukov-Lipshitz theorem [1, 2]). After this proof there is a remark saying that «We do not know whether a corresponding theorem holds in the analogous language L'_{div} », where L'_{div} is the first-order language of the signature $\langle 0, 1, +, -, [], =, | \rangle$. We prove that the theory is decidable in section 1.

If we assume that $x \perp y \rightleftharpoons \operatorname{GCD}(x,y) = 1$, then for rational numbers x and y their coprimeness means that these numbers are coprime integers. The elementary theory of the structure $\langle \mathbb{Q}; \sigma \rangle$ admits quantifier elimination (see [4, Corollary 3.5]). Extend σ'' by the coprimeness relation \bot and dis-equality \neq ; exclude the order relation and the integer part operation. Denote the resulting signature σ_{\bot} . In section 2 we sketch the proof of the fact that for every positive existential $L_{\sigma_{\bot}}$ -formula there is an equivalent in \mathbb{Q} quantifier-free $L_{\sigma_{\bot}}$ -formula. Note that $\langle \mathbb{Q}; \sigma_{\bot} \rangle$ has undecidable elementary theory as a corollary of the undecidability result for the elementary theory of the structure $\langle \mathbb{Z}; 0, 1, +, -, =, \bot \rangle$ proved by D. Richard in [3].

1. One Weispfenning's remark

Theorem 1. The existential theory of the structure $\langle \mathbb{R}; 0, 1, +, -, [], =, <, | \rangle$ is decidable.

Proof. To prove the theorem we reduce it to the decidable positive existential theory of the structure $\langle \mathbb{Q}; 0, 1, +, -, =, <, | \rangle$. Its decidability follows from Bel'tyukov-Lipshitz theorem on decidability of $\exists \operatorname{Th}\langle \mathbb{Z}; 1, +, <, | \rangle$. In the first step of the proof we apply some syntactic transformations of a given formula. For example, using the formula $y = \left[\frac{y}{x}\right]x + \left\{\frac{y}{x}\right\}x$ we can define $x \nmid y$ by a positive existential formula in $\langle \mathbb{R}; 0, 1, +, -, =, <, | \rangle$. Then we have to prove that this formula is true in \mathbb{R} iff it is true in \mathbb{Q} .

Let the formula

$$\varphi(\overline{x}) \rightleftharpoons \bigwedge_{i=1..k} g_i(\overline{x}) = 0 \land \bigwedge_{i=k+1..l} f_i(\overline{x}) \mid g_i(\overline{x}) \land \bigwedge_{i=l+1..m} g_i(\overline{x}) < 0,$$

be satisfiable in \mathbb{R} , where \overline{x} is a list of variables $x_1,...,x_n; g_i(\overline{x})$ for $i \in [1..m]$ and $f_j(\overline{x})$ for $j \in [k+1..l]$ are linear polynomials with integer coefficients.

Suppose this formula is true for some real values $\alpha_1, ..., \alpha_n$. Then let for i = k+1..k' we have $g_i(\alpha_1, ..., \alpha_n) = 0$ and $g_j(\alpha_1, ..., \alpha_n) \neq 0$ for every $j \in [k'+1..l]$.

Now define the formula

$$\varphi'(\overline{x}) \rightleftharpoons \bigwedge_{i=1..k'} g_i(\overline{x}) = 0 \land \bigwedge_{i=k'+1..l} f_i(\overline{x}) \mid g_i(\overline{x}) \land \bigwedge_{i=k'+1..l} \sigma_i \cdot g_i(\overline{x}) < 0 \land \bigwedge_{i=l+1..m} g_i(\overline{x}) < 0,$$

where $\sigma_i = 1$ if $g_i(\alpha_1, ..., \alpha_n) < 0$ and $\sigma_i = -1$ if $g_i(\alpha_1, ..., \alpha_n) > 0$ for i = k' + 1..l. Consider the system of linear equations with integer coefficients $\bigwedge_{i=1..k'} g_i(\overline{x}) = \sum_{i=1..k'} g_i(\overline{x})$

0. Let $A\overline{y} + b$ be a solution set of the system for some rational matrix A, rational vector b and fresh variables $\overline{y} = y_1, ..., y_t$. Substitute $A\overline{y} + b$ for \overline{x} and get an equisatisfiable over the reals system of linear inequalities and divisibilities with rational coefficients

$$\varphi''(\overline{y}) \rightleftharpoons \bigwedge_{i=k'+1..l} \widetilde{f}_i(\overline{y}) \mid \widetilde{g}_i(\overline{y}) \land \bigwedge_{i=k'+1..l} \sigma_i \cdot \widetilde{g}_i(\overline{y}) < 0 \land \bigwedge_{i=l+1..m} \widetilde{g}_i(\overline{y}) < 0,$$

such that for every rational solution of $\varphi''(\overline{y})$ we can get a rational solution of $\varphi'(\overline{x})$ and thus of $\varphi(\overline{x})$.

Let $\beta_1,...,\beta_t$ be some real satisfying assignment of $\varphi''(\overline{y})$ Let also the real numbers $\{1,\gamma_1,...,\gamma_s\}$ for some $s\leq t$ be a basis of the linear space over $\mathbb Q$ generated by the reals $\{1,\beta_1,...,\beta_t\}$. Each element β_i is uniquely represented as $c_{i,0}\cdot 1+c_{i,1}\cdot \gamma_1+...+c_{i,s}\cdot \gamma_s$ for i=1..t, where all $c_{i,j}\in \mathbb Q$. Define $\chi_i(z_1,...,z_s)=c_{i,0}+c_{i,1}z_1+...+c_{i,s}z_s$ for i=1..t, substitute $\chi_i(z_1,...,z_s)$ for y_i in $\varphi''(\overline{y})$ and get a new formula

$$\psi(\overline{z}) = \varphi''(\chi_1(\overline{z}), ..., \chi_t(\overline{z})).$$

Thus for every rational satisfying assignment of the formula $\psi(\overline{z})$ one can get a rational satisfying assignment of $\varphi''(\overline{y})$, and moreover $\psi(\gamma_1, ..., \gamma_s)$ holds.

Rewrite $\psi(\overline{z})$ in the following form:

$$\bigwedge_{i=1..l'} \widetilde{\widetilde{f}}_i(\overline{z}) \mid \widetilde{\widetilde{g}}_i(\overline{z}) \wedge \bigwedge_{i=1..m'} \widetilde{\widetilde{g}}_i(\overline{z}) < 0$$

for some $l' \leq m'$. Consider independently each divisibility $\widetilde{\widetilde{f}}(\overline{z}) \mid \widetilde{\widetilde{g}}(\overline{z})$ in $\psi(\overline{z})$ for $\widetilde{\widetilde{f}}(\overline{z}) = a_0 + a_1 z_1 + \ldots + a_s z_s$ and non-zero polynomial $\widetilde{\widetilde{g}}(\overline{z}) = b_0 + b_1 z_1 + \ldots + b_s z_s$. We will show that, actually, $\widetilde{\widetilde{g}}(\overline{z})$ is an integer multiple of $\widetilde{\widetilde{f}}(\overline{z})$ and thus the divisibility holds for every values of \overline{z} .

For some integer w we have $w \cdot f(\gamma_1,...,\gamma_s) = g(\gamma_1,...,\gamma_s)$. Let $\gamma_0 = 1$, then assuming that $w \cdot a_i \gamma_i \neq b_i \gamma_i$ for some $i \in [0..s]$, we get that $\gamma_i(w \cdot a_i - b_i) = \sum_{j=0..s \wedge j \neq i} \gamma_j(b_j - w \cdot a_j)$. But this is impossible since $1, \gamma_1, ..., \gamma_s$ are linearly independent over \mathbb{Q} .

Thus every solution of the subsystem of linear inequalities $\bigwedge_{i=1..m'} \widetilde{\widetilde{g}_i}(\overline{z}) < 0$ with rational coefficients is also a solution of $\psi(\overline{z})$, and since the system is consistent in \mathbb{R} , there is some rational solution.

2. Integer divisibility on $\mathbb Q$ and quantifier elimination

Theorem 2. For every positive existential $L_{\sigma_{\perp}}$ -formula one can construct an equivalent in \mathbb{Q} quantifier-free $L_{\sigma_{\perp}}$ -formula.

As $\operatorname{GCD}(x,y) = d \Leftrightarrow \frac{x}{d} \perp \frac{y}{d}$, we can consider linear polynomials with rational coefficients in expressions of the form $\operatorname{GCD}(f(\overline{x}),g(\overline{x})) = d$, $f(\overline{x}) = 0$ and $f(\overline{x}) \neq 0$. Elimination of an existential quantifier is based on the following lemma.

Lemma 1. For the system $\bigwedge_{i\in[1..m]}GCD(a_i,b_i+x)=d_i$ with $a_i,b_i,d_i\in\mathbb{Q}$ and $a_i\neq 0,\ d_i>0$ for every $i\in[1..m],$ we define for every prime p the integer $M_p=\max_{i\in[1..m]}v_p(d_i)$ and the index sets $J_p=\{i\in[1..m]:v_p(d_i)=M_p\}$ and $I_p=\{i\in J_p:v_p(a_i)>M_p\}$. Then the system has a solution in \mathbb{Q} iff the following conditions simultaneously hold:

$$(i) \bigwedge_{i \in [1..m]} d_i \mid a_i$$

$$(ii) \bigwedge_{i,j \in [1..m]} GCD(d_i, d_j) \mid b_i - b_j$$

$$(iii) \bigwedge_{i,j \in [1..m]} GCD(a_i, d_j, b_i - b_j) \mid d_i$$

$$(iii) \bigcap_{i,j \in [1..m]} GCD(a_i, d_j, b_i - b_j) \mid d_i$$

(iv) For every prime $p \leq m$ and every $I \subseteq I_p$ such that |I| = p there are such $i, j \in I$, $i \neq j$ that $v_p(b_i - b_j) > M_p$.

In our case in place of a_i and b_i there will be some linear polynomials with rational coefficients.

As a corollary, we get that the relation $x \not\perp y$ is not positively existentially definable in this structure as otherwise the theory $\operatorname{Th}\langle \mathbb{Q}; 0, 1, +, -, =, \bot \rangle$ is decidable.

Conclusion

It is natural to ask for the following generalization of both Weispfenning's main theorem and Theorem 2. How the signature $\sigma = \left\langle 0, 1, +, -, [\,], \{c\cdot\}_{c \in \mathbb{Q}}, =, <, \bot \right\rangle$ can be extended with some predicates, positively existentially definable in $\langle \mathbb{Q}; \sigma \rangle$, such that for every positive existential formula there is some equivalent in this structure quantifier-free formula?

References

- A. Bel'tyukov, Decidability of the universal theory of natural numbers with addition and divisibility (in Russian), Zapiski Nauchnyh Seminarov LOMI, vol. 60, 1976, pp. 15-28.
- [2] L. Lipshitz, *The Diophantine problem for addition and divisibility*, Trans. Amer. Math. Soc., vol. 235, 1978, pp. 271-283.

- [3] D. Richard, Definability in Terms of the Successor Function and the Coprimeness Predicate in the Set of Arbitrary Integers, The Journal of Symbolic Logic, vol. 54, no. 4, 1989, pp. 1253-1287.
- [4] V. Weispfenning, *Mixed real-integer linear quantifier elimination*, International Symposium on Symbolic and Algebraic Computation (ISSAC), ACM Press, 1999, pp. 129-136.

Mikhail R. Starchak Dept. of Informatics Saint-Petersburg State University St. Petersburg, Russia e-mail: mikhstark@gmail.com