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Cooper’s philosophy

Using Groebner bases computations in order to decode cyclic codes

Given some well determined set of polynomials, the lexicographical
reduced Groebner basis is computed and employed for the decoding
process, in order to detect and correct the errors eventually occurred
during a transmission, by making some computations with the
locator polynomials.



Ideas in this framework

Cooper has the idea to turn the problem to get the errors from the
syndromes into a problem on polynomials. More precisely,
Cooper takes a (finite) set of polynomials FC , such that the error
locations are in V (FC) and he computes the lexicographical reduced
Groebner basis of I = (FC). The required error locator polynomial
can be directly computed via the elimination property of
lexicographical Groebner bases.



Ideas in this framework

Chen et al.
• gave an approach to decoding via Newton identities, which
was improved by Augot-Bardet-Faugere;
• introduced the so called syndrome variety and the related

syndrome ideal and proposed to deduce via a Groebner basis
pre-computation a series of polynomials from which they
deduce the plain error locator polynomial for each error and
associated syndromes. This approach has been refined by
Loustaunau-York and Caboara-Mora.



Sala-Orsini

Many elements in the syndrome variety are spurious so not
corresponding to any error vector. Orsini and Sala improved the
decoding process by eliminating the spurious solutions of the
system and introduced the general error locator polynomial
(GELP).

GELP
Sala-Orsini’s GELP is a polynomial σ(z, s) such that, if the error
correction capability of the considered cyclic code is t and µ ≤ t
errors occurred, then, given the corresponding syndrome vector s,
the roots of σ(z, s) are the µ error locations and zero with
multiplicity t − µ.
Every cyclic code admits a GELP.



We should degroebnerize

In Sala-Orsini’s context
• the input is not simple;
• it is computationally intensive to compute the Groebner basis;
• the output is huge;
• most of its elements are irrelevant (we only need the locator
polynomial);
• and the locator can be very dense



The importance of being sparse

Decoding
Evaluating the GELP in the syndromes and finding the roots

The bo�leneck in the decoding procedure, using the GELP, is the
evaluation in the syndrome vector, it is useful to find a sparse
version of such a polynomial and our analysis started from this
point.



Our analysis

The code
C [n, k, d] binary cyclic code (starting from BCH and then
generalizing).
t = 2 so up to 2 error corrected.

Reversing the point of view
We study Sala-Orsini syndrome variety V (FOS) with an approach
à la Moeller: we do not compute the Groebner basis from the
polynomial system but we get the locator via interpolation from
the variety.



Example: n = 2m − 1 and S = {1, 3}

In this case n = 2m − 1 and the primary defining set is S = {1, 3}.
We exclude the spurious elements in the syndrome variety:

X = {(c + d , c3 + d 3, c, d ), c, d ∈ F2m , c 6= d }.

Variables: x1, x2 syndromes; z1, z2 locations; x1 < x2 < z1 < z2,
→ (x1, x2, z1, z2).



Degroebnerization

Why you should not even think…
Groebner bases are not e�icient to be computed, therefore
Degroebnerization is aimed to limit only to the very necessary
cases the use of Groebner bases, finding alternative solutions
every time it is possible.

We will see in what follows, two fundamental tools for
Degroebnerizing the decoding procedure.



First tool: Cerlienco-Mureddu correspondence

1990
Cerlienco and Mureddu study how to compute the lexicographical
Groebner escalier of the (zerodimensional radical) ideal of a finite
set of simple points X = {P1, ..., PN} ⊂ kn, without using
Groebner bases. They prove a bijection between the points and
the monomials in the escalier.

The algorithm is purely combinatoric and only uses comparisons
among the coordinates of the points. It is iterative on the points and
recursive on the variables. Complexity O(n2N2).

Ceria-Mora’s version with Bar Codes
Complexity O(nN2log(N)).



Second tool: Marinari-Mora’s theorem
Consider a zerodimensional radical ideal I / P , fixing on P the
lexicographical order < induced by x1 < x2 < ... < xn. Denote by
N(I) the associated lexicographical Groebner escalier and by

G(I) := {t1, ..., tr} ⊆ T , ti = xdi,1
1 · · · x

di,n
n

the monomial basis for the lexicographical semigroup ideal T(I).
Then, there exist polynomials

γmδi = xm − gmδi(x1, ..., xm−1),

for each i ∈ {1, ..., r}, m ∈ {1, ..., n} and δ ∈ {1, ..., di,m} such that
the products

fi =
∏
m

∏
δ

γmδi, i = 1, ..., r

form a minimal Groebner basis of I, with respect to <.



Groebner escalier

Lemma
Let X = {P1, ..., PN} be a finite set of simple points in kn and let d be
the number of distinct elements in k that appear as first coordinate
of some point in X. Let I(X) / k[x1, ..., xn] be the ideal of points of X
and N(X) its lexicographical Groebner escalier, supposing
x1 < x2 < ... < xn. Then it holds 1, x1, x2

1 , ..., x
d−1
1 ∈ N(X).



Groebner escalier

Notation: if τ ∈ T and H ⊂ T , then τH := {τσ, σ ∈ H}.

Theorem
Let H = {1, x1, ..., xq−2

1 }, where q = n + 1 = 2m. The lexicographical
Groebner escalier (x1 < x2 < z1 < z2) of the ideal I = I(X) described
as the ideal associated to
X = {(c + d, cl + d l, c, d), c, d ∈ F2m , c, 6= d} has the form

N(I) = N′ ∪ z1N′,

where
N′ = H ∪ x2H ∪ ... ∪ x

q
2−1
2 H.



Only the case of two errors

If we want to study the case in which exactly two errors occur, we
should remove from the variety the points of the form

(c, cl, c, 0), (c, cl, 0, c),

so the escalier becomes

N(I) = N′ ∪ z1N′,

where N′ = H ∪ x2H ∪ ... ∪ x
q
2−2
2 H.



Groebner escalier: visualizing it

If we identify each term xα1
1 · · · xαn

n ∈ T with its exponents’ list
(α1, ..., αn) ∈ Nn and we regards (α1, ..., αn) as a point in the
n-dimensional a�ine space, we can say that the escalier of ideal I
has the shape of two superimposed rectangles.



Example: BCH over F8

X = {(c + d, c3 + d3, c, d), c, d ∈ F8, c, 6= d}; the Groebner escalier
N(I(X)) is given by N(I) = N′ ∪ z1N′, where
N′ = H ∪ x2H ∪ ... ∪ x3

2H and H = {1, x1, ..., x6
1}



The structure

• z21 , z2 ∈ G(I) monomial basis
• z2 = z1 + x1 ∈ I ⇒ once known c, it is easy to deduce d (linear

and sparse)⇒ only useful the polynomial with leading term z21 .

Marinari-Mora’s theorem: Fc := z1 + fc(x1, x2), Fd := z1 + fd (x1, x2)
and partition X = Zc t Zd , |Zc | = |Zd | = 1

2 |X| =
(q
2

)
s.t

• Fc zero on Zc ; Fd zero on Zd ;
• (x1, x2, z1, z2) ∈ Zc ⇔ (x1, x2, z2, z1) ∈ Zd .



The structure [2]

⇒ restriction to Zc , Fc : other locations from z2 = z1 + x1. Therefore
we interpolate in half of the points.

Half Error Locator Polynomial (HELP) is the polynomial Fc and
it is the only polynomial really needed for decoding.



Decoding procedure
Preprocessing
Find a sparse HELP.

Step 1
Evaluate the HELP in the syndromes, finding a linear polynomial η
in z1.

Step 2
Solve in z1 the equation η = 0; the root is one of the two error
locations c.

Step 3
Evaluate the polynomial z2 + z1 + x1 in the first syndrome (x1 = s1)
and the first location (z1 = c).

Step 4
Solve the equation z2 + s1 + c = 0 in z2, ge�ing the second location
d := s1 + c.



A sparsity matter

Pairs:
[(c + d , c3 + d 3, c, d ), (c + d , c3 + d 3, d , c)],
→
Pick a point for each pair: the choice influences the sparsity of the
HELP Fa



Example: inspection over F8

BCH code over F8

A bad choice
z1 + x3

1x3
2 + x2

1x3
2 + a4x1x3

2 + a2x3
2 + ax6

1x2
2 + a6x5

1x2
2 + a5x4

1x2
2 +

a6x3
1x2

2 + a4x2
1x2

2 + a6x1x2
2 + a6x2

2 + ax5
1x2 + a4x4

1x2 + a4x3
1x2 + x2

1x2 +
a4x1x2 + x2 + a3x6

1 + a5x5
1 + a3x4

1 + a2x3
1 + a3x2

1 + a2x1 + a3

A good choice
z1 + a6x2

1x2
2 + a4x5

1x2 + a3x1
The di�erence is in only one point!



We need a good HELP

The “good choice” is still not optimal: it correct up to two errors
but for the case of one error c, it returns the value 0, so to compute c
we need the second equation z2 = z1 + x1, namely we have x1 = c,
z1 = 0 and we have to compute c as second location: z2 = 0 + c.
We will see soon that we can compute sparse HELPs giving directly
the error c in this case.



Good choice - good pattern

A good choice
z1 + a6x2

1x2
2 + a4x5

1x2 + a3x1

x6
1 0 0 0 0

x5
1 0 a4 0 0

x4
1 0 0 0 0

x3
1 0 0 0 0

x2
1 0 0 a6 0

x1 a3 0 0 0
1 0 0 0 0

1 x2 x2
2 x3

2



The knight gambit

A good choice
z1 + a6x2

1x2
2 + a4x5

1x2 + a3x1



x6
1 0 0 0 0

x5
1 0 a4 0 0

x4
1 0 0 0 0

x3
1 0 0 0 0

x2
1 0 0 a6 0

x1 a3 0 0 0
1 0 0 0 0

1 x2 x2
2 x3

2


Knight move: x−31 x2



General structure for the case n = 2m − 1 and
S = {1, l}

The HELPs have at most n+1
2 + 1 terms: n = 2m − 1 length of the

code.

General shape

η(x1, x2, z1) = z1 +

n+1
2∑

i=1

aix
(n+1−li) mod n
1 x

(i−1) mod n+1
2

2

where ai ∈ GF (2m) are the coe�icients.

Knight move: x−l
1 x2



What about the coefficients?

the HELP can be found performing Lagrange interpolation in the
points with third coordinate c = 1 (with d

c = a2i+1) plus the point
(1, 1, 1, 0) in the terms t i , 0 ≤ i ≤ 2m−1, where t = x−l mod n

1 x2, that
is, t is the knight move.

It has the form η(x1, x2, z1) = z1 + x1g(t), where g(t) is the
Lagrange interpolator.



Example: BCH code over F8

For the code with n = 7 and S = {1, 3} over F8, the HELP is
z1 + x1(x5

1x3
2 + a2x1x2

2 + a4x4
1x2 + a).

Knight move:
x6
1 0 0 0 1

x5
1 0 a4 0 0

x4
1 0 0 0 0

x3
1 0 0 0 0

x2
1 0 0 a2 0

x1 a 0 0 0
1 0 0 0 0

1 x2 x2
2 x3

2

It is easy to verify that the HELP corrects up to two errors and
that if only one error occurs it is directly returned as output by the
HELP.



HELP exists and it can be found
Our aim is to decode a binary cyclic code C over F2m , length
n = 2m − 1 and primary defining set SC = {1, l}.
We have the n(n− 1) non spurious points (points composed by
non spurious syndromes and the corresponding errors)

(c + d, cl + d l, c, d), c, d ∈ F∗2m , c 6= d,

or, equivalently,
(n
2

)
pairs{(

c + d, cl + d l, c, d
)
,
(

c + d, cl + d l, d, c
)}
, c, d ∈ F∗2m , c 6= d.

Moreover, we have to consider the n pairs of the form{(
c, cl, c, 0

)
,
(

c, cl, 0, c
)}
, c ∈ F∗2m ,

which correspond to the occurrence of one single error.



HELP exists and it can be found

Denoting by a any primitive element of F2m and se�ing a−∞ = 0,
we can represent these pairs as{(

c(1 + a2i+1), cl(1 + a2li+l), c, a2i+1c
)
,(

c(1 + a2i+1), cl(1 + a2li+l), a2i+1c, c
)
, c ∈ F∗2m

}
,

i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}.

se�ing d/c := a2i+1 (in the case d = 0, c 6= 0, a2i+1 = a−∞).



HELP exists and it can be found

HELP, by construction, is the polynomial
η(x1, x2, z1) = z1 + h(x1, x2) such that if h is evaluated at each of the(n+1

2

)
points(

c(1 + a2i+1), cl(1 + a2li+l)
)
, c ∈ F∗2m , i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}

returns the value c.



HELP exists and it can be found

The Lagrange interpolator g(t), deg(g) = 2m−1 + 1, which returns
(1 + a2i+1)−1 when evaluated at each values

t = (1 + a2i+1)−l(1 + a2li+l), i ∈ {0, ..., 2m−1 − 1} ∪ {−∞},

gives a HELP, in the sense that, defined h(x1, x2) = x1g(x−l
1 x2), it

holds
η(x1, x2, z1) = z1 + h(x1, x2) = z1 + x1g(x−l

1 x2).



Proof

To prove that η is a HELP, we have to prove that, given a point

P =
(

c(1+a2i+1), cl(1+a2li+l)
)
, c ∈ F∗2m , i ∈ {0, ..., 2m−1−1}∪{−∞}

it holds h(P) = c.



Proof

Note that x1 = c(1 + a2i+1) implies c = x1(1 + a2i+1)−1 and

x2 = cl(1 + a2li+l) = x l
1(1 + a2i+1)−l(1 + a2li+l).

Now, consider a point of the form

P =
(

c(1 + a2i+1), cl(1 + a2li+l), c, a2i+1c
)
,

c ∈ F∗2m , i ∈ {0, ..., 2m−1 − 1} ∪ {−∞} and evaluate h(P):

h(P) = h(x1, x2) = x1g(x−l
1 x2) = x1g(x−l

1 x l
1(1 + a2i+1)−l(1 + a2li+l))

= c(1 + a2i+1)(1 + a2i+1)−1 = c.

This proves that η is a HELP.



No errors?

Our HELP is consistent also with the case in which no errors occur,
even if we do not consider the point (0, 0, 0, 0) in our variety.
Indeed, the HELP has shape η(x1, x2, z1) = z1 + x1g(x1, x2).

When no error occurs, we have x1 = 0, leading to η = z1, giving the
only root z1 = 0. Since then z2 = z1 + x1, it holds z2 = 0 + 0 = 0
and so we retrieve the two zero locations.



What’s going on now

In the case n | 2m − 1, S = {1, l}, the escalier has a more involved
form, even though the symmetry is respected.

• Study of the structure: a: primitive (2m − 1)th root of unity,
α := 2m−1

n and b := aα a primitive nth root of unity,
Rn := {e ∈ F2m : en = 1} and Sn := Rn t {0}

Z2 := {(c + d, cl + d l, c, d), c, d ∈ Rn, c 6= d},#Z×
2 = n2 − n;

Z+ := {(c + d, cl + d l, c, d), c, d ∈ Sn, c 6= d},#Z×
+ = n2 + n,

Zns := {(c + d, cl + d l, c, d), c, d ∈ Sn} \ {(0, 0, c, c), c ∈
Rn},#Z×

ns = n2 + n + 1,
Ze := {(c + d, cl + d l, c, d), c, d ∈ Sn},#Z×

e = (n + 1)2.

• The HELP in that case, by means of Cerlienco-Mureddu
correspondence.



The case n | 2m − 1, S = {1, l}
Consider a binary cyclic code C with length n | 2m − 1 and primary
defining set S = {1, l}.
The syndrome variety of this code contains n(n− 1) non spurious
points (namely points composed by non spurious syndromes and
the corresponding errors)

(c + d, cl + d l, c, d), c, d ∈ Rn, c 6= d,

or, equivalently,
(n
2

)
pairs{(

c + d, cl + d l, c, d
)
,
(

c + d, cl + d l, d, c
)}
, c, d ∈ Rn, c 6= d, (1)

whereRn denotes the set of n-th roots of unity in F2m . Moreover, we
have to consider the n pairs of the form{(

c, cl, c, 0
)
,
(

c, cl, 0, c
)}
, c ∈ Rn, (2)

which correspond to the occurrence of one single error. In total, we
have

(n+1
2

)
pairs, corresponding to the occurrence of one or two

errors.



Representing the points

Denoting by a any primitive element of F2m and se�ing a−∞ = 0,
we can represent these pairs as{(

c(1 + a2i+1), cl(1 + a2li+l), c, a2i+1c
)
,(

c(1 + a2i+1), cl(1 + a2li+l), a2i+1c, c
)
, c ∈ Rn

}
,

i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}.

se�ing d/c := a2i+1 (in the case d = 0, c 6= 0, a2i+1 = a−∞).



Who is the HELP?

HELP, by construction, is the polynomial
η(x1, x2, z1) = z1 + h(x1, x2) such that if h is evaluted on each of the(n+1

2

)
points(

c(1 + a2i+1), cl(1 + a2li+l)
)
, c ∈ Rn, i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}

(3)
returns the value c.



The escalier is not so simple

In order to get the HELP we need, we consider the set Q, given by
the n+1

2 points

Q :=
{(

(1 + a2i+1), (1 + a2li+l)
)
, i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}

}
,

so we take the points of the syndrome variety with c = 1 and we
consider only the first and the second coordinates, namely the
syndromes, keeping in mind that a correctable syndrome vector
uniquely identifies an error vector.



The escalier is not so simple

We make now the following coordinates’ change:{
X = xn

1

Y = x−l
1 x2,

under which, the points in Q become of the form:

Q′ :=
{(

(1 + a2i+1)n, (1 + a2i+1)−l(1 + a2li+l)
)
,

i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}
}
.



The escalier is not so simple

The set Q′ is finite, in particular |Q′| ≤ |Q| = n+1
2 , and we can

perform Cerlienco-Mureddu correspondence on it, ge�ing
N(I(Q′)) := Φ(Q′), the lexicographical Groebner escalier of the
ideal associated to the variety Q′. This order ideal contains |Q′|
terms.

As proved by Cerlienco-Mureddu, there exists a polynomial
g′(X ,Y) =

∑
t∈N(I(Q′)) bt t , bt ∈ F2m , that takes value (1 + a2i+1)−1

at each point in Q′.

Back to Q
Changing back the coordinates from (X ,Y) to (x1, x2), we get a
polynomial g(x1, x2) taking value (1 + a2i+1)−1 once evaluated in
the elements of Q.



HELP exists, even with n | 2m − 1.

The polynomial

η(x1, x2, z1) := z1 + h(x1, x2),

where h(x1, x2) = x1g(x1, x2) is a HELP.



Proof: aim

To prove that η is a HELP, we have to prove that, given a point(
c(1 + a2i+1), cl(1 + a2li+l)

)
, c ∈ Rn,

i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}

it holds h(P) = c.



Proof: shape of the HELP

By construction, the polynomial h(x1, x2) has the form:

h(x1, x2) =
r−1∑
j=0

xnj+1
1

sj−1∑
k=0

bjk(x−l
1 x2)k ,

where r is the number of di�erent first coordinates of the points in
Q′ and sj is the number of occurrences in Q′ of the (j + 1)-th first
coordinate j = 0, ..., r − 1.



Proof: evaluation [1]

Now, to conclude, only an evaluation is needed:

r−1∑
j=0

cnj+1(1 + a2i+1)nj+1
sj−1∑
k=0

bjkc−lk(1 + a2i+1)−lkclk(1 + a2li+l) =

c
r−1∑
j=0

cnj(1 + a2i+1)nj+1
sj−1∑
k=0

bjkc−lk(1 + a2i+1)−lkclk(1 + a2li+l)



Proof: evaluation [2]

Since c ∈ Rn, cn = 1, so

c
r−1∑
j=0

cnj(1 + a2i+1)nj+1
sj−1∑
k=0

bjkc−lk(1 + a2i+1)−lkclk(1 + a2li+l) =

c(1 + a2i+1)
r−1∑
j=0

(1 + a2i+1)nj
sj−1∑
k=0

bjk(1 + a2i+1)−lk(1 + a2li+l) =

c(x1g)((1 + a2i+1), (1 + a2li+l)) = c,

where the last equality comes from the fact that
g(P) = (1 + a2i+1)−1, for each P ′ ∈ Q and so x1g takes value one
once evaluated in P .



Thank you
for your a�ention!


