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Extended Abstract

We first review the State of the Art and then outline our progress and state some
major research challenges. Further details can be found in arXiv:1805.12042

1. The problem and three celebrated approaches. Univariate polynomial root-
finding has been the central problem of mathematics and computational mathe-
matics for four millennia, since Sumerian times (see [5], [10], [11]). Interest to it
has been revived due to the advent of modern computers and applications to sig-
nal processing, control, financial mathematics, geometric modeling, and computer
algebra. The problem remains the subject of intensive research. Hundreds of effi-
cient polynomial root-finders have been proposed, and new ones keep appearing
(see [6], [7]).

Two known root-finders are nearly optimal. The algorithm of [9] and [13],
proposed in 1995 and extending the previous progress in [15] and [8], first computes
numerical factorization of a polynomial into the product of its linear factors and
then readily approximate the roots.1 In the case of inputs of large size the algorithm
solves both problems of numerical factorization and root-finding in record low
and nearly optimal Boolean time, that is, it approximates all linear factors of a
polynomial as well as all its roots, respectively, almost as fast as one can access
the input coefficients with the precision required for these tasks.2 The algorithm,
however, is quite involved and has never been implemented.

1Numerical polynomial factorization has various important applications to modern computa-
tions, besides root-finding, in particular to time series analysis, Wiener filtering, noise variance

estimation, co-variance matrix computation, and the study of multichannel systems.
2For an input polynomial of degree d the bounds on the required input precision and Boolean
time are greater by a factor of d for root-finding than that for numerical factorization.
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Recently Becker et al in [1] proposed the second nearly optimal polynomial
root-finder, by extending the previous advances of [14] and [12] for the classical
subdivision iterations. The algorithm has been implemented in 2018 and promises
to become practical, but so far the root-finder of user’s choice is the package
MPSolve, devised in 2000 [2] and revised in 2014 [3]. It implements Ehrlich’s
iterations of 1967, rediscovered by Aberth in 1973. Currently subdivision root-
finder performs slightly faster than MPSolve of [3] for root-finding in a disc on the
complex plain containing a small number of roots but is noticeably inferior for the
approximation of all roots of a polynomial.3

2. Representation of an input polynomial. The algorithms of [9], [13], and [1]
involve the coefficients of an input polynomial p = p(x), relying on its representa-
tion in monomial basis:

p(x) =

d∑
i=0

pix
i = pd

d∏
j=1

(x− xj), pd 6= 0, (1)

where we may have xk = xl for k 6= l. In contrast Ehrlich’s and various other func-
tional root-finding iterations such as Newton’s and Weierstrass’s can be applied to
a more general class of black box polynomials – those represented by a black box
subroutine for their evaluation, e.g., those represented in Bernstein’s bases and
sparse polynomials such as Mandelbrot’s (cf. [2, Eqn.16]).

3. Our progress. Having reviewed the State of the Art, we significantly accel-
erate subdivision and Ehrlich’s iterations by means of properly combining them
with known and novel root-finding techniques. Moreover we extend subdivision
iterations to black box polynomials, enabling their dramatic acceleration in the
case of sparse input polynomials. Next we itemize our progress.

• We dramatically accelerate root-counting for a polynomial in a disc on the
complex plain, which is a basic ingredient of subdivision iterations.4

• Even stronger we accelerate exclusion test: it verifies that a disc contains no
roots and is the other key ingredient of subdivision iterations.

• We extend our fast exclusion test to proximity estimation, that is, estimation
of the distance from a complex point to a closest root of p(x).5

• We accelerate subdivision iterations by means of decreasing the number of
required exclusion tests,

• We accelerate subdivision iterations by means of deflation of small degree
factors whose root sets are well-isolated from the other roots of p.

• We accelerate real polynomial root-finding by means of nontrivially extending
all our progress with subdivision iterations.

3The computational cost of root-finding in [9], [13], and [1] decreases at least proportionally to
the number of roots in a region of interest such as a disc on the complex plain, while MPSolve

approximates the roots in such regions almost as slow as all complex roots.
4We count m times a root of multiplicity m.
5Proximity estimation for p′(x) is critical in path-lifting polynomial root-finders [4].
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• Our simple but novel deflation algorithm supports accurate approximation
of all roots of a polynomial of extremely high degree.

• We accelerate Ehrlich’s iterations by means of incorporation of the Fast Mul-
tipole Method (FMM).

4. Further details of root-counting and exclusion test. The previous accel-
eration of the known root-counting in [1] was justly claimed to be their major
algorithmic novelty versus their immediate predecessors of [14] and [12], but we
enhance that progress: our root-counting is performed at a smaller computational
cost under milder assumptions about the isolation of the boundary circle of a disc
from the roots of p(x). We can counter the decrease of the root isolation by a
factor of f by means of increasing the number of evaluation points just by a fac-
tor of log(f). Compared to the common recipe of root-squaring this has similar
arithmetic cost but avoids coefficient growth. Even if we do not know how well the
boundary circle is isolated from the roots we just recursively double the number
of evaluation points until correctness of the root count is confirmed. For heuristic
confirmation we can stop where the computed root count approximates an integer,
and we propose additional verification recipes. The same algorithm enables fast ex-
clusion test for a fixed disc, but by perfroming some simple low cost computations
we decrease the need for exclusion tests.

5. Three major research challenges. We hope that our work will motivate
further research effort towards synergistic combination of some efficient techniques,
both well- and less-known for polynomial root-finding.

Devising practical and nearly optimal algorithms for numerical factorization
of a polynomial is still a challenge – both Ehrlich’s and subdivision iterations are
slower for that task by at least a factor of d than the nearly optimal solution in
[9] and [13], which is quite involved and not practically competitive.

Our root-finders accelerate the known nearly optimal ones and promise to
become user’s choice. Their implementation, testing and refinement are major
challenges. This work, just initiated, already shows that our improvement of the
known algorithms is for real.
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