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Abstract. In the report we discuss the problems of constructing difference
schemes that mimic the properties of dynamic systems. We show how these
problems can be solved in systems with quadratic integrals and how a many-
body problem can be reduced to such systems.

One of the most widespread mathematical models is a dynamic system de-
scribed by an autonomous system of ordinary differential equations, i.e., the system
of the form

dxi
dt

= fi(x1, . . . , xn), i = 1, 2, . . . n, (1)

where t is an independent variable, commonly interpreted as time, and the vari-
ables x1, . . . , xn depending on it as coordinates of a point of several points. In
applications the sight-hand sides fi are often rational or algebraic functions of the
coordinates x1, . . . , xn or can be reduced to such form using a certain change of
variables. As a rule, from physical reasons a few integrals of motion are known,
but they are not sufficient to reduce the system of differential equations to Abel
quadratures.

For example, the classical problem of n bodies [1] consists in finding solutions
to the autonomous system of ordinary differential equations

mi~̈ri =

n∑
j=1

γ
mimj

r3ij
(~rj − ~ri) , i = 1, . . . , n (2)

Here ~ri is the radius vector of the i-th body and rij is the distance between the
i-th and j-th body. This dynamic system is a Hamiltonian system of the order
2 · 3 · n. For reducing it to quadratures using the Liouville method it is necessary
to find 3 ·n algebraic integrals of motion in involution [2]. At the time of Liouville,
only ten independent algebraic integrals of the many-body problem were known,
which were called classical. In the 1880s, Bruns proved that every other algebraic
integral of this problem is expressed in terms of these ten [2, 3]. This means that the
many-body problem cannot be reduced to quadratures by the Liouville method.
The question of whether it can be reduced to Abelian quadratures in another way
was formulated by Bruns himself and resolved negatively [3, n. 23].
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Classical explicit difference schemes, including explicit Runge-Kutta schemes,
do not preserve these integrals. However, among implicit difference schemes there
are schemes that preserve some classes of integrals of motion. The most studied are
symplectic Runge-Kutta schemes that preserve all quadratic integrals of motion.
For example, for a linear oscillator or a system of several coupled oscillators, these
schemes allow organizing the calculation of the approximate solution in such a way
that all the integrals of this system are preserved. In this case, the approximate
solution mimics the periodicity of the exact solution, for example, you can choose
a time step so that the approximate solution is a periodic sequence [4].

The construction of such mimetic schemes in the case of nonlinear dynamical
systems is complicated by the appearance of non-quadratic integrals. For example,
in the classical many-body problem by the Bruns theorem, there are 10 indepen-
dent algebraic integrals, of which 9 are quadratic and therefore are preserved using
any symplectic scheme. The first finite-difference scheme for the many-body prob-
lem, preserving all classical integrals of motion, was proposed in 1992 by Greenspan
[5, 6] and independently in somewhat different form by J.C. Simo and O. González
[7, 8]. The Greespan scheme is a kind of combination of the midpoint method and
discrete gradient method.

In other site the standard symplectic schemes will preserve all integrals if
we introduce the new variables such a way that all classical integrals are qua-
dratic with respect of new variables. This approach is close to the invariant energy
quadratization method (IEQ method) which was first proposed by Yang et al. [9]
and used by Hong Zhang et al. [10] to conserve the energy at discretization of
Hamiltonian systems including Kepler two-body problem. We applicate the same
idea in many body problem.

First of all, we get rid of irrationality by introducing new variables rij , related
to the coordinates by the equation

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = 0

Then we eliminate the denominators in the energy integral by introducing new
variables ρij , related to the already introduced ones by the equations

rijρij = 1.

Note that this relation is quadratic again, so that after introducing additional
variables this relation will turn into an additional quadratic integral.

For the sake of brevity let us denote the velocity components of the i-th
body as ẋi = ui, ẏi = vi, and żi = w and combine them into vector ~vi. From the
many-body problem we pass to a system that consists of three coupled subsystems,
namely, the system for coordinates

~̇ri = ~vi, i = 1, . . . , n (3)

the system for velocities

mi~̇vi =

n∑
j=1

γ
mimjρij
r2ij

(~rj − ~ri) , i = 1, . . . , n (4)
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the system for distances

ṙij =
1

rij
(~ri − ~rj) · (~vi − ~vj), i, j = 1, . . . , n; i 6= j. (5)

and the system for inverse distances

ρ̇ij = −
ρij
r2ij

(~ri − ~rj) · (~vi − ~vj), i, j = 1, . . . , n; i 6= j. (6)

This system possesses 10 classical integrals of the many-body problem and addi-
tional integrals

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = const, i 6= j (7)

and
rijρij = const, i 6= j. (8)

The autonomous system of differential equations (3)-(6), involving n(n− 1) addi-
tional variables rij and ρij , has the following properties:
1. this system has quadratic integrals of motion (7) and (8), that allow express-

ing the additional variables rij and ρij in terms of the coordinates of the
bodies,

2. if the constants in these integrals are chosen such that

r2ij − (xi − xj)2 − (yi − yj)2 − (zi − zj)2 = 0 and rijρij = 1,

the solutions of the new system coincide with the solutions of the original
one,

3. the new system has quadratic integrals of motion, which, with the relation
between the additional variables and the coordinates of the bodies taken into
account, turn into 10 classical integrals of the many-body problem.
Since all the classical integrals of the many-body problem, as well as the

additional integrals in the new variables are quadratic, any symplectic Runge-
Kutta difference scheme, including the simplest of them, the midpoint scheme,
preserves all these integrals for sure.

Moreover, the autonomous system of differential equations (3)-(6) preserves
the symmetry of the original problem with respect to permutations of bodies and
time reversal, as, for example, the midpoint scheme.

At each step of the midpoint scheme, new values will be determined not only
for the coordinates and velocities of the bodies, but also for auxiliary quantities
rij and ρij . If at the initial moment of time only the coordinates and velocities
were specified, and the auxiliary variables were defined by equalities

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, ρij =
1

rij
,

then these equalities are preserved exactly (maybe up to the radical’s signs) due
to the fact that the auxiliary integrals (7) and (8) are quadratic and are preserved
exactly when using the midpoint scheme; therefore, the quantities rij and ρij do
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not lose their original meaning of the distances between the bodies and the inverse
distances between the bodies.

Therefore, the midpoint scheme written for the system (3) - (6) preserves all
its algebraic integrals exactly and is invariant under permutations of bodies and
time reversal.

The report will present the results of numerical experiments with a midpoint
scheme with an emphasis on its mimetic character, see also [11].

It should also be emphasized that the many-body problem has been reduced
to the problem, all of whose integrals are quadratic. Another classical mechanical
problem, the gyroscope rotation problem, has the same properties. The same prob-
lems arise when introducing classical transcendental functions elliptic and Abelian.
Therefore, we intend to investigate in more detail dynamical systems with qua-
dratic integrals.
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