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Kushnirenko theorem
For m = (m1, . . . ,mn) ∈ Zn ⊂ Rn we consider the function xm = xm1

1 . . . xmn
n

called the character of the complex torus (C \ 0)n.

For a finite set S ⊂ Zn the function
∑

m∈S,cm∈C cmxm is called Laurent polynomial
with the support S.

The space of Laurent polynomials with the support S we denote by V .

The convex hull ∆ = conv(S) we call the Newton polyhedron of the set S or the
Newton polyhedron of the space V .

It follows from some general theorems of algebraic geometry that almost tuples of
n functions from the space V have the same number of common zeros.
Denote this number by M(V ).

Kushnirenko theorem

M(V ) = n! vol(∆)
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Example: linear equations

Linear equations
n = 2, S = {(0, 0), (1, 0), (0, 1)}, V = {a + bx + cy : a, b, c ∈ C}
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What is a smooth version of Kushnirenko theorem?

Let X be an n-dimensional manifold (instead of the torus (C \ 0)n), and let
V ⊂ C∞(X ,R) be a some finite-dimensional vector subspace (instead of the
space of Laurent polynomials with a fixed support).
We consider the systems of equations

f1 − a1 = . . . = fi − ai = . . . = fn − an = 0, (1)

0 6= fi ∈ V , ai ∈ R.

The left-hand side of the equality of Kushnirenko theorem will be the average
number M(V ) of roots of system (1) with respect to some measure on the space
of systems.

The right-hand side will be the volume of the Banach convex body in X ,
corresponding to chosen measure.
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The average number of roots

The choice of averaging measure is as follows. The Grassmanian of affine
hyperplanes in the space E we denote by AGr1(E ). We identify the equation
f − a = 0 with

H ⊂ V ∗ = {v∗ ∈ V ∗ | v∗(f ) = a} ∈ AGr1(V ∗)

and respectively identify the system (1) with (H1, . . . ,Hn) ∈
(
AGr1(V ∗)

)n.

Let µ1 be a countably additive translation invariant smooth measure on
AGr1(V ∗), and the measure µn

1 be a corresponding measure on
(
AGr1(V ∗)

)n.
Thus the averaging measure Ξ = µn

1 on the space of systems (1) obtained and the
average number of roots M(V ) defined.

The average number of roots M(V ) depends on the choice of measure µ1.
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Banach bodies in X

Definition 1
Banach body (or B-body) in X is a collection of centrally symmetric convex bodies

B = {B(x) ⊂ T ∗x X : x ∈ X}

in the fibers of the cotangent bundle of X .

Definition 2
The volume of B-body vol(B) is defined as the volume of

⋃
x∈X B(x) ⊂ T ∗X

with respect to the standard symplectic structure on the cotangent bundle. More
precisely, if the symplectic form is ω then the volume form is ωn/n!.

Lemma
Introduce a Riemannian metric h on X . Let hx be the corresponding metric on Tx
and h∗x the dual metric on T ∗x . Then vol(B) =

∫
X V (B(x))dx , where the volume

V (B(x)) of B(x) is measured with the help of h∗x , and dx is the Riemannian
n-density on X .
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Banach bodies in X , II

Let V ∗ be a dual to V vector space. Define the mapping θ : X → V ∗, as
θ(x)(f ) = f (x). Let dθ(x) : Tx X → V ∗ be a differential of θ at x , and
d∗θ(x) : V → T ∗x X be an adjoint linear operator. For a centrally symmetric
convex body B ⊂ V define a B-body

B = {B(x) = d∗θ(x)(B) ⊂ T ∗x X}.

From {D. Yu. Burago, S. Ivanov. Isometric embeddings of Finsler manifolds. St. Petersburg Math. J. 5
(1994), (5:1)} it follows that any smooth strongly convex B-body has a similar origin.

Let V be a Banach space, and B be a unit ball of Banach metric in V . We will
say that the Banach body B defined above corresponds to the Banach space V .
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Kushnirenko theorem formulation

Consider a Banach metric in V ∗, dual to the metric of Banach space V . Recall
that a translation invariant measure on AGr1(V ∗) is called the Crofton measure,
if a measure of a set of hyperplanes, crossing any segment, equals to the length of
this segment. It is true that for a smooth Banach metric the Crofton measure
exists and unique.

Smooth Kushnirenko theorem
Let the unit ball of Banach metric in V is smooth and strongly convex. Then for
average number of roots M(V ), measured with help of the Crofton measure in
V ∗ is true that

M(V ) = n! · vol(B),

where B is the B-body corresponding to the Banach space V .
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Mixed volume

Using Minkowski sum and homotheties, we consider linear combinations of
B-bodies with non-negative coefficients

(
∑

i
λiBi )(x) =

∑
i
λiBi (x).

The volume vol(λ1B1 + . . .+ λnBn) is a homogeneous polynomial of degree n in
λ1, . . . , λn.

Definition
The coefficient of polynomial vol(λ1B1 + . . .+ λnBn) at λ1 · . . . · λn divided by n!
is called the mixed volume of B-bodies B1, . . . ,Bn and is denoted by
vol(B1, . . . ,Bn).
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BKK theorem
Let V1, . . . ,Vn be finite dimensional Banach spaces of C∞(X ,R)-funstions,
µi ∈ AGr1(V ∗i ) be Crofton measures, Ξ = µ1 × . . .× µn be a corresponding
measure on the space AGr1(V ∗1 )× . . .×AGr1(V ∗n ) considering as a measure on
the space of systems f1 − a1 = . . . = fn − an = 0, identified with tuples
(H1, . . . ,Hn) ∈ AGr1(V ∗1 )× . . .×AGr1(V ∗n ). Set

M(V1, . . . ,Vn) =
∫

AGr1(V ∗
1 )×...×AGr1(V ∗

n )
N(H1, . . . ,Hn) dΞ,

where N(H1, . . . ,Hn) is a number of roots of corresponding system.

BKK theorem

M(V1, . . . ,Vn) = n! · vol(B1, . . . ,Bn),

where Bi is the B-body corresponding to the Banach space Vi .
D.Akhiezer, B.Kazarnovskii. Average number of zeros and mixed symplectic volume of Finsler sets. Geom.
Funct. Anal., vol. 28 (2018), 1517–1547.
B. Kazarnovskii. Average number of solutions for systems of equations. Funktsional. Anal. i Prilozhen.,
(2020), (54:2), 35–47
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Hodge inequality, I

Let X be a homogeneous space of a compact Lie group. Assume that the spaces
Vi are Euclidean and their scalar products are invariant. As a corollary from BKK
theorem we get the Hodge inequalities similar to the well-known inequalities for
intersection indices in algebraic geometry.

Theorem

M2(V1, . . . ,Vn−1,Vn) ≥M(V1, . . . ,Vn−1,Vn−1) ·M(V1, . . . ,Vn,Vn)

Proof.
All Banach ellipsoids Bi are invariant. Consequently

vol(B1, . . . ,Bn) = V(B1(x), . . . ,Bn(x)) · vol(X ),

where V(B1(x), . . . ,Bn(x)) is a mixed volume, measured with respect to the
metric of cotangent bundle, dual to invariant Riemannian metric in X . Therefore,
the inequality is a consequence of the Alexandrov-Fenchel inequalities.
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Hodge inequality, II
Let X = K/L be a Riemannian isotropy irreducible homogeneous space, ∆ be the
Laplace operator on X and H(λ) be an eigenspace of ∆ with eigenvalue λ,
considered with L2 metric. Put

M(λ1, . . . , λn) = M(H(λ1), . . . ,H(λn)), M(λ) = M(λ, . . . , λ).

It is known from {V.M.Gichev. Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces. Anal.

Math. Phys. (2013), (3:2)} and {D.Akhiezer, B.Kazarnovskii. On common zeros of eigenfunctions of the Laplace operator. Abh. Math. Sem. Univ.

Hamburg (2017), (87:1)} that
M(λ) = 2

σnnn/2λ
n/2vol (X ),

where σn is the volume of the n-dimensional sphere of radius 1.

For isotropy irreducible X the Hodge inequality becomes the equality.

Therefore (Gichev theorem)

M(λ1, . . . , λn) = 2
σnnn/2

√
λ1 · . . . · λn vol (X ).
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Translation invariant measures and virtual Banach metrics
Let E be a Euclidean vector space. Denote by ρ(H), ϕ(H) polar coordinates of
the nearest to 0 point of H ∈ AGr1(E ). For any smooth even function g : S → R
the measure g · dρ dϕ is a smooth translation invariant measure on AGr1(E ).
The space of such measures denote by m1(E ).

Theorem
The space m1(E ) does not depend on a choice of Euclidean metric in E .

Definition
Let the function |x | : E → R be a difference of two Banach norms in vector space
E. Then the function |x | is called a virtual Banach metric.

Theorem
(1) For any µ ∈ m1(E ) there exists a unique smooth virtual Banach metric in E ,
such that µ is a Crofton measure for this virtual Banach metric.
(2) If the measure µ is positive then this virtual metric is real and zonoidal.
(3) On the contrary, for any zonoidal Banach metric positive Crofton measure
exists and unique.
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BKK theorem for virtual Banach metrics

Let |x | be a virtual Banach metric in E , |x | = |x |1 − |x |2, where |x |1, |x |2 are
Banach metrics in E , B1, B2 be the init balls of the dual Banach metrics in E∗.
Then the virtual convex body B1 −B2 does not depend on the choice of |x |1, |x |2,
and is called the unit ball of the dual virtual metric.

BKK for virtual Banach metrics
Let ν1 ∈ m1(V ∗1 ), . . . , νn ∈ m(V ∗n ) be Crofton measures for virtual Banach metrics
|x |i in the spaces V ∗i , M(V1, . . . ,Vn) be an average number of roots with respect
to averaging measure ν1 × . . .× νn on the space of systems. Then

M(V1, . . . ,Vn) = vol(B1, . . . ,Bn),

where B1, . . . ,Bn are the virtual B-bodies corresponding to virtual unit balls in
spaces V1, . . . ,Vn.
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