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The statement of the problem

A self-adjoint elliptic PDE in the region z = (i, ..., Z4) € Q C RY (Q is polyhedra)

—Li 9 ~(z)i +V(@Z)—E|®(z)=0
(@) = 92" oz, o

90(z) > 0, gji(z) = g;(z) and V(z) are the real-valued functions, continuous together
with their derivatives to a given order.

+ Boundary conditions

+ Conditions of normalization and orthogonality (for discrete spectrum problem)

Ladyzhenskaya, O. A.,; The Boundary Value Problems of Mathematical Physics,
Applied Mathematical Sciences, 49, (Berlin, Springer, 1985).
Shaidurov, V.V. Multigrid Methods for Finite Elements (Springer, 1995).



Finite Element Method

Stages:
o Finite Element Mesh

> Simplex Mesh
> Parallelepiped Mesh

> e

Construction of shape functions
> Interpolation Polynomials

* Lagrange Interpolation Polynomials
* Hermite Interpolation Polynomials
> oo

Construction of piecewise polynomial functions by joining the shape functions

Calculations of the integrals
» Construction of fully symmetric Gaussian quadratures

* No points outside the simplex
* Positive weights

> e

Solving of Algebraic Eigenvalue Problem




Lagrange Finite Elements

The polyhedron Q = Ug:1 Ay is covered with simplexes Aq with d+1 vertices:
2,‘:(2,'1,2,'2,...,2/(1), = O,...,d.

On each simplex Ay we introduce the shape functions, for example IPL: ¢, () = .

The piecewise polynomial functions M(z) are constructed by joining the shape

functions ¢;(z) in the simplex Aq: Nj(z) = {ap,(z),A/ € Ag;0,A & Aq} and possess

the following properties:
functions N;(z) are continuous in the domain ;
the functions Mj(z) equal 1 in one of the points A; and zero in the rest points.
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Finite Element Method

Solutions ®(z) are sought in the form of a finite sum over the basis of local functions
NJ(z) in each nodal point z = zx of the grid Qx(2):

d(z) = Li"’ﬂ’\/ﬁ(Z),

where L is number of local functions, and ¢/ are nodal values of function ®(z) at
nodal points z;.

After substituting the expansion into a variational functional and minimizing it, we
obtain the generalized eigenvalue problem

APe" = "BPe".

Here AP is the stiffness matrix; BP is the positive definite mass matrix; £h is the
vector approximating the solution on the finite-element grid; and &” is the
corresponding eigenvalue.




1D Interpolation Hermite Polynomials

1D Interpolation Lagrange Polynomials

o
Z— Z,
<p,(z,/) = 6”/, QO,(Z,/) = H <27r> .

r'=0,r'#r r

1D Interpolation Hermite Polynomials

d~ o (2)

dzn/ = 6”’ 6;1)@’ .

zZ=Z
r!

‘Pf(zr’) =0 5&07

To calculate the IHPs we introduce the auxiliary weight function

o N;r}ax »
wa)= I (22)" . @ w@e@,  we -1

Z — Z
r'=0,r'#r 7 r’

R -l ¢ - A
(2)= 2D L gg), R@D=1 d@= > ST
r/

P =077z47




Interpolation Hermite Polynomials

1D Interpolation Hermite Polynomials: Analytical formula

n;"a"—1
or(z) = w(2) E (z— z,) ,
r/=0
0, K < K,
k! 1/Kl!7 K = K,
ar = w1 ’ " "
1 — KK /
- Z (N/,H//)!gf " (zf)ar , K > K.
k=K

Note that all degrees of interpolation Hermite polynomials ¢;(Z) do not depend on

and equal p' = YF_ k7 — 1.

In the case of the nodes of identical multiplicity x;> = ™, r =0, ..., p the degree

of the polynomials is equal to p’ = k™ (p+ 1) — 1.
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> IHptype:=18,8] 310
>

> wpot:=proa(s) (-99/4)foosh (x)°2; ands
> £ai=proa(z) 1; en
> fhimproo(z) 1

>

3 anio
2
dim AB=216 =10
o =mesh:=[-50.,-31.58,-20.74,-14.26, -9. 52,7—ﬂ 04,-5.08,-3.70,-2.70, -1. 95, -
]
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The economical implementation, accepted in FEM:

d d
Fay ! ! =1 A A~ A~ .
Zi = 2o + E Jizi, zi = E )iz —2o), Jj=21—2, i=1,..,d.
= =

d d
9 Ny 90 0 —1y 0
oz, lz:; Ji 0z 0z ;(J )i a2

2. The calculation of FEM integrals is executed in the local coordinates.

/dzgo(z)<p, (Z)Lp,/ (z)U(z) J/dz 9o(2(2))pr (2 )Lp,/ (z)U(z(z ), J= det(J;)>0

Aq

/dzg%(z)a@,(z)a%, @) 55 (e /dzgm () 221002 (),

et 0z 0z,




FEM calculation scheme

Each edge of the simplex Aq is divided into p
equal parts and the families of parallel
hyperplanes H(i, k), k =0, ..., p are drawn.
The equation of the hyperplane H(i, k):
H(i;z) — k/p =0, H(i; Z) is a linear on Zz.

The points A of hyperplanes crossingare
enumerated with sets of hyperplane numbers:
[no, ..., ng], Ni >0, No + ... + ng = p.

The coordinates & = (&1, ..., &) of Ar € Ag:

gr:2ono/p~|—21 n /p+...~|—2dnd/p.

[40.0] [41.0] [32.0] 23,01 X401\ [0-5.0]

Lagrange Interpolation Polynomials (in the local coordinates)

ng—1 0_  _of
on()= HH nz/pnn/;/)p H 1—z{—...—zj—my/p

i=1 n/=

/
ny=0

No/pP—ngy/P




Algorithm for calculating the basis of Hermite interpolating polynomials

The problem

Constructions of the HIP of the order p’, joining which the piecewise polynomial
functions can be obtained that possess continuous derivatives to the given order x’.

Step 1. Auxiliary polynomials (AP1)

8“‘+”'+”dgpf1 -~-Kd(2/)
9z .9z}

(p;jw~--”~d(5;):5rr,5mo."§ﬁdo, :5rr’5n1u1~- 0

Okgugs
2/25;/
0<k1+r2+..+kd < kEmax—1, 0 g+ po+ .+ pg < Kmax—1.

Here in the node points &/, in contrast to LIP, the values of not only the functions
themselves, but of their derivatives to the order kmax—1 are specified.




Algorithm for calculating the basis of Hermite interpolating polynomials

AP1 are given by the expressions

IR ) = wi(2) a2 = ) x X (2= )

BEA,

d ni—1 , max no—1 max

Wr(Z/): H H % H (1—2{—...—211_”(3{{"‘;)5 7 Wr(ﬁ;):

it o (M/P=1i/P) weo  (M0/P=%/P)

where the coefficients a5’ "®*1#d are calculated from recurrence relations

0, wpit+...Fpg < Ki+...+Kq, (IJ417~~-7lde) == (K1,..., lid),

-:Q
t‘_‘

. R (/Ma’-'a/"'d) = (Hhmvﬁd);

Z <” (wi—)! >g;‘1—V1, 7I~‘4d_l/d(£;)a;€1...Rd,l/1...ud7
veA, \i=1
Lt g > K1t FRg;

g,@mz,_,,@d(zl) _ 1 an1+n2+...+ndwr(z/)

R R BT i
gt

wi(2') 0z;"19zy"2...0zZ "
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Algorithm for calculating the basis of Hermite interpolating polynomials

For d > 1 and kmax > 1, the number N, . of HIP of the order p’ and the
multiplicity of nodes ~max are smaller than the number N;, of the polynomials that
form the basis in the space of polynomials of the order p’, i.e., these polynomials, are
determined ambiguously.

Step 2. Auxiliary polynomials (AP2 and AP3)

For unambiguous determination of the polynomial basis let us introduce
K = Nipr — N, auxiliary polynomials Qs(2) of two types: AP2 and AP3, linear
independent of AP1 and satisfying the conditions in the node points £, of AP1:

U ’ ’
851 TRyt Ry Qs(z/)
0z 9z} Dzl

Qs(é-;’):07

=0, s=1,...K,
ZI:‘E;/

0<Ki+re+..+kd < mmax—1, O0< g+ pe+ ...+ pg < Fmax—1.

AP?2 for cont. of derivs. (15 on bounds of A):

AP3 (¢ inside A):

*Qs(2')

I =dss’s S, s'=1 yeny T1(K/)- QS(Cé’):(Sss’, s, 3/27-1(/@/)'{‘1 K.
i(s)

I — !
Z'=ngy




Construction of AP2 and AP3 at d =2

Example 1: p=1, kmax =2, p' =3, = ' =0

Alt. variant (Zienkievicz triangle)®: ¢(1/3,1/3) =0

2Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ.
Comp, Amsterdam (1978)




Construction of AP2 and AP3 at d =2

Example: p =1, kmax = 3, p' =5, = ' = 1 (the Argyris triangle)

Argyris triangle (" = 1): AP1 (18 elements) + AP2 (3 elements: % =0sg/
(CRNPES
at 77;’ € {(07 1 /2)a (1/2’ 0)7 (1 /27 1 /2)})
— — 5 (i
Alt. variant (Bell triangle, &’ = 1): Z2P*=%(z) — 2P*=3(2)), < %;’6(54) =0.

5N
Alt. variant (k" = 0): AP1 (18 elements) + AP3 (3 elements: Qs(Cl )=dss at
ny € {(1/2,1/4),(1/4,1/2),(1/4,1/4)} or (Qs or G or §2)=6s at
ne € (1/3,1/3)).




Construction of AP2 and AP3

Example 3 (d=3): p=1, kmax =3, 0 =5, =" =0

So,at d =38, k" =1atp >9.




Simplest d-dimensional HIPs
Here zo = 1-— Zi— ... — 24, ik 7& i/, ik = 0,...,d

p=1, =2, [0 =&
AP3: by 1 on each 2-faces®

Zi1 = Z,'z = Z,'3 ES 1/3, Qs(z) = 27zf1 zizzfg

2Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ.
Comp, Amsterdam (1978)

p=1, mm =8, 0 =5
AP3: by 3 on each 2-faces z;, =z, =1/4,z, =1/2,

25
25

by 4 on each 3-faces z, = z, = z, = 1/5,z, =2/5

Qs(2) = 2, 2,2, (52 +52; — 4525 +402;, 2, —602z;, 2, — 602, 2}, + Zj, + 2, +-512, —6)

625
Qs(2) = _72/1 2,2;,2,(52, — 1)

by 1 on each 4-faces z, =z, =z, =z, =2, =1/5

QS(Z) = 31252,‘1 Zj22j32j4z,'5




Simplest d-dimensional HIPs

p=1, kmax = 3, p’ = 5 (preserving first derivative iv vicinity of the edges)

AP2: by d — 1 derivatives in directions normal to the edge, at the center of edge.
Example

=1

z1=1/2,2p=...=24=0
Q:(z2) =8202122(2202z1 + (1 — 20 — z1 — 22)(6/5 — 320 — 3z1 — 22))
AP3: by 4 on each 3-faces z;, = z, = z;, =1/5,2, =2/5

625
QS(Z) = —TZ,'1 Z,'2Z,'3Z,'4 (52,'4 = 1)

by 1 on each 4-faces z, =z, = z;, =z, =z, = 1/5

QS(Z) = 31252,‘1 Zj,Zj3 Zj, Zjg




The auxiliary polynomials AP2 and AP3:

7 /K /k 7 \Kq 7 / J
Q(Z)=21"".zy (1 — 2z — .. — Z5)"® E by, jwisZi 247,
Jtyeeeodd

where ki = 1, if the point 7s, in which the additional conditions are specified, lies on
the corresponding face of the simplex A and k; = max(1, '), if H(t,ns) # 0.

The coeflicients by ... j,;s are determined from the unambiguously solvable system of
linear equations, obtained as a result of the substitution of this expression into the
above conditions of Step 2.

Step 3: Recalculation of AP1

P g 2)eape,
&r(2)=pr(z Z CririsQs(Z), Crins= Tits) 2/=n},
s=1 ©r(¢s), Qs(2')eAP3.

Step 4. Recalculation of AP1 and AP2 due to coordinate transformation

d

9 _N~ -, 2
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Tricubic interpolation in three dimensions

F. Lekien™"1-2 and 1. Marsden?

Mechanical and Acrospace Engincerng, Princeton Universsy. USA.
Conml and Dynanical Systms. Calfornia Istine of Technology, US.A.

SUMMARY.

purpose of this paper is to.give & local ricubic interpolation scheme i three dimensions that is
a specifc 64 64 matrix hat gives the relatonship

s at the comers of the clements and the coeficients of the tricubic inerpolant

st i interpolation where the iterpolated function usully depends

Jementation of the intes

“The major difference between this work and currer
do ol separate the problem into three one-dimensional problems.
i llows T3 i e and st Sompurtion ofHgher et of s atspolasd it
Applicatons 1 the c Lagrangian coherent sirutures in ocean data are briely discussed.
Copyright © 2005 John Wily & Soms L
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1. INTRODUCTION

1.1, Motivation from ocean dynamics

‘There has been considerable interest in using observational and model data available in coastal

regions to compute Lagrangian structures such as barriers o transport and alleyways in the flow.
an exa Lyapunov exponent field conpued using hih ey

radar data collected in the bay of Monterey, along the California sh

o of hihe seig 1 e e of Fckrn 1) Th oot ol i Figen 1

define a boundary between the open ocean and a re-circulating area inside the bay. These
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Figure 4. Experimentally observed velocity vectors (red arrows) in Monterey Bay.
CA (see Reference [11] for details) and sampled velocity vectors (black arrows)
resulting from the tricubic interpolation of the experimental data. Panel (a) shows
the whole bay and panel (b) enlarges a small portion of the domain close to the
coastline where a Dirichlet boundary condition has been properly enforced.

11. Paduan JD, Cook MS. Mapping surface
currents in Monterey Bay with radar-type HR
data. Oceanography 1997; 10:49-52.




IHP of d variables: extension of Lekien&Marsden’s Algorithm

The IHPs of d variables in d-dimensional cube are calculated in analytical form as an
product of one dimensional ITHPs depending on each of the d variables

it TG L d
_ g Py o N_s 55 5
@/1 (X1,"'7Xd)_ 90,'5 (XS)7 / / (X17"'7Xd) - X1X1"" XdXé npﬁ"' mdné

K

1 d
ox; " ...Xxy

where ¢;°(Xs) are 1D IHPs.

In particular, for p = 1, kmax = 2, p’ = 3 the one-dimensional IHPs take the form:

o o (xs) = (1= x5)2(1 + 2x5), Topein 20(xs) = x2(3 — 2x5),

for polynomials whose value is equal to 1 at one node and

rs=1

Pis=0 (xs)=(1- XS)2X57 ‘PZS:11 (xs) = —X§(1 — Xs),

for polynomials whose first derivative is equal to 1 at one node.
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The discrepancy 6En = Ef — En of calculated eigenvalue Ef of the Helmholtz
problem for a square with the edge length 7. Calculations were performed using
FEM with 3rd-order and 5th-order (3Ls and 5Ls) simplex Lagrange elements, and
parallelepiped Lagrange (3Lp and 5Lp) and Hermite (3Hp and 5Hp) elements. The
dimension of the algebraic problem is given in parentheses.
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The discrepancy 6En = Ef — En of calculated eigenvalue EZ of the Helmholtz
problem for a four-dimensional cube with the edge length 7. Calculations were
performed using FEM with 3rd-order (3Ls) simplex Lagrange elements, and
parallelepiped Lagrange (3Lp) and Hermite (3Hp) elements. The dimension of the
algebraic problem is given in parentheses.



Resume

o The algorithms for constructing the multivariate interpolation Hermite
polynomials in an analytical form in multidimensional hypercube or simplex are
presented.

o Interpolation Hermite polynomials are determined from a specially constructed
set of values of the polynomials themselves and their partial derivatives.

o The algorithms based on ideas of papers [al—a5] allows us to avoid explicit
solving the system of algebraic equations or reduce it.

al F. Lekien and J. Marsden, International Journal for Numerical Methods in
Engineering, 63 (2005) 455-471.

a2 A. A. Gusev, et al., Lecture Notes in Computer Science, 8660 (2014) 138-154.
a3 A. A. Gusev, et al., Lecture Notes in Computer Science, 10490 (2017) 134-150.
ad A. A. Gusev, et al., EPJ Web of Conferences, 173 (2018) 03009.

ab A. A. Gusev, et al., EPJ Web of Conferences, 173 (2018) 03010.
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