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The statement of the problem

A self-adjoint elliptic PDE in the region z = (z1, ..., zd ) ∈ Ω ⊂ Rd (Ω is polyhedra)

− 1
g0(z)

d∑
ij=1

∂

∂zi
gij (z)

∂

∂zj
+ V (z)− E

Φ(z) = 0,

g0(z) > 0, gji (z) = gij (z) and V (z) are the real-valued functions, continuous together
with their derivatives to a given order.
+ Boundary conditions
+ Conditions of normalization and orthogonality (for discrete spectrum problem)

Ladyzhenskaya, O. A., The Boundary Value Problems of Mathematical Physics,
Applied Mathematical Sciences, 49, (Berlin, Springer, 1985).
Shaidurov, V.V. Multigrid Methods for Finite Elements (Springer, 1995).



Finite Element Method

Stages:

Finite Element Mesh
I Simplex Mesh
I Parallelepiped Mesh
I ...

Construction of shape functions
I Interpolation Polynomials

F Lagrange Interpolation Polynomials
F Hermite Interpolation Polynomials

I ...

Construction of piecewise polynomial functions by joining the shape functions
Calculations of the integrals

I Construction of fully symmetric Gaussian quadratures
F No points outside the simplex
F Positive weights

I ...

Solving of Algebraic Eigenvalue Problem



Lagrange Finite Elements

The polyhedron Ω =
⋃Q

q=1 ∆q is covered with simplexes ∆q with d+1 vertices:

ẑi =(ẑi1, ẑi2, ..., ẑid ), i = 0, ..., d .

On each simplex ∆q we introduce the shape functions, for example IPL: ϕr (ξr ′) = δrr ′ .
The piecewise polynomial functions Nl̄ (z) are constructed by joining the shape

functions ϕl (z) in the simplex ∆q : Nl̄ (z) =

{
ϕl (z),Al ∈ ∆q ; 0,Al 6∈ ∆q

}
and possess

the following properties:
functions Nl̄ (z) are continuous in the domain Ω;
the functions Nl̄ (z) equal 1 in one of the points Al and zero in the rest points.



Finite Element Method

Solutions Φ̂(z) are sought in the form of a finite sum over the basis of local functions
Ng
µ(z) in each nodal point z = zk of the grid Ωh(z):

Φ̂(z) =
L−1∑
µ=0

Φh
µNg

µ(z),

where L is number of local functions, and Φh
µ are nodal values of function Φ̂(z) at

nodal points zl .

After substituting the expansion into a variational functional and minimizing it, we
obtain the generalized eigenvalue problem

Apξh = εhBpξh.

Here Ap is the stiffness matrix; Bp is the positive definite mass matrix; ξh is the
vector approximating the solution on the finite-element grid; and εh is the
corresponding eigenvalue.



1D Interpolation Hermite Polynomials

1D Interpolation Lagrange Polynomials

ϕr (zr ′) = δrr ′ , ϕr (zr ′) =

p∏
r ′=0,r ′ 6=r

(
z − zr ′

zr − zr ′

)
.

1D Interpolation Hermite Polynomials

ϕκr (zr ′) = δrr ′δκ0,
dκ

′
ϕκr (z)

dzκ′

∣∣∣∣
z=z

r′

= δrr ′δκκ′ .

To calculate the IHPs we introduce the auxiliary weight function

wr (z) =

p∏
r ′=0,r ′ 6=r

(
z − zr ′

zr − zr ′

)κmax
r′

,
dκwr (z)

dzκ
= wr (z)gκr (z), wr (zr ) = 1,

gκr (z) =
dgκ−1

r (z)

dz
+ g1

r (z)gκ−1
r (z), g0

r (z) = 1, g1
r (z) =

p∑
r ′=0,r ′ 6=r

κmax
r ′

z − zr ′
.



Interpolation Hermite Polynomials

1D Interpolation Hermite Polynomials: Analytical formula

ϕκr (z) = wr (z)

κmax
r −1∑
κ′=0

aκ,κ
′

r (z − zr )
κ′
,

aκ,κ
′

r =


0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

1
(κ′−κ′′)!

gκ
′−κ′′

r (zr )aκ,κ
′′

r , κ′ > κ.

Note that all degrees of interpolation Hermite polynomials ϕκr (z) do not depend on κ
and equal p′ =

∑p
r ′=0 κ

max
r − 1.

In the case of the nodes of identical multiplicity κmax
r = κmax, r = 0, . . . , p the degree

of the polynomials is equal to p′ = κmax(p + 1)− 1.





The economical implementation, accepted in FEM:

1. The calculations are performed in the local coordinates z′, in which the
coordinates of the simplex vertices are the following: ẑ′j = (ẑ′j1, ..., ẑ

′
jd ), ẑ′jk = δjk

zi = ẑ0i +
d∑

j=1

Jijz′j , z′i =
d∑

j=1

(J−1)ij (zj − ẑ0j ), Jij = ẑji − ẑ0i , i = 1, ..., d .

∂

∂z′i
=

d∑
j=1

Jji
∂

∂zj
,

∂

∂zi
=

d∑
j=1

(J−1)ji
∂

∂z′j
.

2. The calculation of FEM integrals is executed in the local coordinates.

∫
∆q

dzg0(z)ϕκr (z)ϕκ
′′

r ′ (z)U(z) = Ĵ
∫
∆

dz′g0(z(z′))ϕκr (z′)ϕκ
′′

r ′ (z′)U(z(z′)), Ĵ= det(Jij )>0

∫
∆q

dzgs1s2 (z)
∂ϕκr (z)

∂zs1

∂ϕκ
′′

r ′ (z)

∂zs2

=Ĵ
d∑

t1,t2=1

(J−1)t1s1 (J−1)t2s2

∫
∆

dz′gs1s2 (z(z′))
∂ϕκr (z′)
∂z′t1

∂ϕκ
′′

r ′ (z′)
∂z′t2

,



FEM calculation scheme

Each edge of the simplex ∆q is divided into p
equal parts and the families of parallel
hyperplanes H(i , k), k = 0, ..., p are drawn.
The equation of the hyperplane H(i , k):
H(i ; z)− k/p = 0, H(i ; z) is a linear on z.

The points Ar of hyperplanes crossingare
enumerated with sets of hyperplane numbers:
[n0, ..., nd ], ni ≥ 0, n0 + ...+ nd = p.

The coordinates ξr = (ξr1, ..., ξrd ) of Ar ∈ ∆q :

ξr =ẑ0n0/p+ẑ1n1/p+...+ẑd nd/p.

Lagrange Interpolation Polynomials (in the local coordinates)

ϕr (z
′)=

 d∏
i=1

ni−1∏
n′i =0

z′i−n′i /p
ni/p−n′i /p

n0−1∏
n′0=0

1−z′1−...−z′d−n′0/p
n0/p−n′0/p

 .



Algorithm for calculating the basis of Hermite interpolating polynomials

The problem

Constructions of the HIP of the order p′, joining which the piecewise polynomial
functions can be obtained that possess continuous derivatives to the given order κ′.

Step 1. Auxiliary polynomials (AP1)

ϕ
κ1...κd
r (ξ′r )=δrr ′δκ10...δκd 0,

∂µ1+...+µdϕ
κ1...κd
r (z′)

∂z′1
µ1 ...∂z′d

µd

∣∣∣∣
z′=ξ′

r′

=δrr ′δκ1µ1 ...δκdµd ,

0 ≤ κ1 + κ2 + ...+ κd ≤ κmax−1, 0 ≤ µ1 + µ2 + ...+ µd ≤ κmax−1.

Here in the node points ξ′r , in contrast to LIP, the values of not only the functions
themselves, but of their derivatives to the order κmax−1 are specified.



Algorithm for calculating the basis of Hermite interpolating polynomials

AP1 are given by the expressions

ϕ
κ1+κ2+...+κd
r (z′) = wr (z′)

∑
µ∈∆κ

aκ1...κd ,µ1...µd
r (z′1 − ξ′r1)µ1 × ...× (z′d − ξ′rd )µd ,

wr (z′)=

 d∏
i=1

ni−1∏
n′i =0

(z′i−n′i /p)κ
max

(ni/p−n′i /p)κmax

n0−1∏
n′0=0

(1−z′1−...−z′d−n′0/p)κ
max

(n0/p−n′0/p)κmax

 , wr (ξ
′
r )=1,

where the coefficients aκ1...κd ,µ1...µd
r are calculated from recurrence relations

aκ1...κd ,µ1...µd
r =



0, µ1+...+µd ≤ κ1+...+κd , (µ1, ..., µd ) 6= (κ1, ..., κd ),
d∏

i=1

1
µi !
, (µ1, ..., µd ) = (κ1, ..., κd );

−
∑
ν∈∆ν

(
d∏

i=1

1
(µi−νi )!

)
gµ1−ν1,...,µd−νd

r (ξ′r )a
κ1...κd ,ν1...νd
r ,

µ1+...+µd > κ1+...+κd ;

gκ1κ2...κd (z′) =
1

wr (z′)
∂κ1+κ2+...+κd wr (z′)
∂z′1

κ1∂z′2
κ2 ...∂z′d

κd
.



Algorithm for calculating the basis of Hermite interpolating polynomials

For d > 1 and κmax > 1 , the number Nκmaxp′ of HIP of the order p′ and the
multiplicity of nodes κmax are smaller than the number N1p′ of the polynomials that
form the basis in the space of polynomials of the order p′, i.e., these polynomials, are
determined ambiguously.

Step 2. Auxiliary polynomials (AP2 and AP3)

For unambiguous determination of the polynomial basis let us introduce
K = N1p′ − Nκmaxp′ auxiliary polynomials Qs(z) of two types: AP2 and AP3, linear
independent of AP1 and satisfying the conditions in the node points ξ′r ′ of AP1:

Qs(ξ′r ′)=0,
∂κ

′
1+κ′

2+...+κ′
d Qs(z′)

∂z′1
µ1∂z′2

µ2 ...∂z′d
µd

∣∣∣∣
z′=ξ′

r′

=0, s = 1, ...,K ,

0 ≤ κ1 + κ2 + ...+ κd ≤ κmax−1, 0 ≤ µ1 + µ2 + ...+ µd ≤ κmax−1.

AP2 for cont. of derivs. (η′s′ on bounds of ∆):

∂k Qs(z′)
∂nk

i(s)

∣∣∣∣
z′=η′

s′

=δss′ , s, s′=1, ...,T1(κ′).

AP3 (ζ′s′ inside ∆):

Qs(ζ′s′)=δss′ , s, s′=T1(κ′)+1, ...,K .



Construction of AP2 and AP3 at d = 2

Example 1: p = 1, κmax = 2, p′ = 3, ⇒ κ′ = 0
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Alt. variant (Zienkievicz triangle)a: ϕ(1/3, 1/3) = 0
aCiarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ.

Comp, Amsterdam (1978)



Construction of AP2 and AP3 at d = 2

Example: p = 1, κmax = 3, p′ = 5, ⇒ κ′ = 1 (the Argyris triangle)
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Argyris triangle (κ′ = 1): AP1 (18 elements) + AP2 (3 elements: ∂
k Qs(z′)

∂nk
i(s)

∣∣∣∣
z′=η′

s′

=δss′

at η′s′ ∈ {(0, 1/2), (1/2, 0), (1/2, 1/2)}).

Alt. variant (Bell triangle, κ′ = 1): z2Pdeg=4(z1)→ z2Pdeg=3(z1),⇔ ∂5ϕ(z′)

∂n∂τ4

∣∣∣∣
δ∆

=0.

Alt. variant (κ′ = 0): AP1 (18 elements) + AP3 (3 elements: Qs(ζ′s′)=δss′ at
η′s′ ∈ {(1/2, 1/4), (1/4, 1/2), (1/4, 1/4)} or (Qs or ∂Qs

∂z1
or ∂Qs

∂z2
)=δss′ at

η′s′ ∈ (1/3, 1/3)).



Construction of AP2 and AP3

Example 3 (d = 3): p = 1, κmax = 3, p′ = 5, ⇒ κ′ = 0
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So, at d = 3, κ′ = 1 at p′ ≥ 9.



Simplest d-dimensional HIPs
Here z0 = 1− z1 − ...− zd , ik 6= il , ik = 0, ..., d

p = 1, κmax = 2, p′ = 3

AP3: by 1 on each 2-facesa

zi1 = zi2 = zi3 = 1/3, Qs(z) = 27zi1 zi2 zi3

aCiarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publ.
Comp, Amsterdam (1978)

p = 1, κmax = 3, p′ = 5

AP3: by 3 on each 2-faces zi1 = zi2 = 1/4, zi3 = 1/2,

Qs(z) = −256
25

zi1 zi2 zi3 (5z2
i1 +5z2

i2−45z2
i3 +40zi1 zi2−60zi1 zi3−60zi2 zi3 +zi1 +zi2 +51zi3−6)

by 4 on each 3-faces zi1 = zi2 = zi3 = 1/5, zi4 = 2/5

Qs(z) = −625
2

zi1 zi2 zi3 zi4 (5zi4 − 1)

by 1 on each 4-faces zi1 = zi2 = zi3 = zi4 = zi5 = 1/5

Qs(z) = 3125zi1 zi2 zi3 zi4 zi5



Simplest d-dimensional HIPs

p = 1, κmax = 3, p′ = 5 (preserving first derivative iv vicinity of the edges)

AP2: by d − 1 derivatives in directions normal to the edge, at the center of edge.
Example

∂Q2(z)

∂z2

∣∣∣∣
z1=1/2,z2=...=zd =0

= 1

Q2(z) = 8z0z1z2(2z0z1 + (1− z0 − z1 − z2)(6/5− 3z0 − 3z1 − z2))

AP3: by 4 on each 3-faces zi1 = zi2 = zi3 = 1/5, zi4 = 2/5

Qs(z) = −625
2

zi1 zi2 zi3 zi4 (5zi4 − 1)

by 1 on each 4-faces zi1 = zi2 = zi3 = zi4 = zi5 = 1/5

Qs(z) = 3125zi1 zi2 zi3 zi4 zi5



The auxiliary polynomials AP2 and AP3:

Qs(z′) = z′1
k1 ...z′d

kd (1− z′1 − ...− z′d )k0
∑

j1,...,jd

bj1,...,jd ;sz′1
j1 ...z′d

jd ,

where kt = 1, if the point ηs, in which the additional conditions are specified, lies on
the corresponding face of the simplex ∆ and kt = max(1, κ′), if H(t , ηs) 6= 0.
The coefficients bj1,...,jd ;s are determined from the unambiguously solvable system of
linear equations, obtained as a result of the substitution of this expression into the
above conditions of Step 2.

Step 3: Recalculation of AP1

ϕ̌κr (z′)=ϕκr (z′)−
K∑

s=1

cκ;r ;sQs(z′), cκ;r ;s=


∂kϕκ

r (z′)

∂nk
i(s)

∣∣∣∣
z′=η′s

, Qs(z′)∈AP2,

ϕκr (ζs), Qs(z′)∈AP3.

Step 4. Recalculation of AP1 and AP2 due to coordinate transformation

∂

∂zi
=

d∑
j=1

(Ĵ−1)ji
∂

∂z′j
.
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Tricubic interpolation in three dimensions

F. Lekien∗,†,1,2 and J. Marsden2

1Mechanical and Aerospace Engineering, Princeton University, U.S.A.
2Control and Dynamical Systems, California Institute of Technology, U.S.A.

SUMMARY

The purpose of this paper is to give a local tricubic interpolation scheme in three dimensions that is
both C1 and isotropic. The algorithm is based on a specific 64 × 64 matrix that gives the relationship
between the derivatives at the corners of the elements and the coefficients of the tricubic interpolant
for this element. In contrast with global interpolation where the interpolated function usually depends
on the whole data set, our tricubic local interpolation only uses data in a neighbourhood of an
element. We show that the resulting interpolated function and its three first derivatives are continuous
if one uses cubic interpolants. The implementation of the interpolator can be downloaded as a static
and dynamic library for most platforms. The major difference between this work and current local
interpolation schemes is that we do not separate the problem into three one-dimensional problems.
This allows for a much easier and accurate computation of higher derivatives of the extrapolated field.
Applications to the computation of Lagrangian coherent structures in ocean data are briefly discussed.
Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: tricubic; interpolation; computational dynamics

1. INTRODUCTION

1.1. Motivation from ocean dynamics

There has been considerable interest in using observational and model data available in coastal
regions to compute Lagrangian structures such as barriers to transport and alleyways in the flow.
As an example, Figure 1 shows the Lyapunov exponent field computed using high-frequency
radar data collected in the bay of Monterey, along the California shoreline. Red denotes
zones of higher stretching in the sense of Reference [1]. The bright red lines in Figure 1
define a boundary between the open ocean and a re-circulating area inside the bay. These
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the elements. As a result, functions that are continuous through all faces in Table III are also
continuous everywhere. �

Using these lemmas, we are now ready to give the main result of this paper.

Theorem 5.1
The tricubic interpolated function f is C1 in three dimensions.

Proof
Lemma 5.5 implies that f is continuous and its three first derivatives are also continuous and
therefore f is C1. �

6. BOUNDARY CONDITIONS AND EXAMPLE

Boundary conditions can be enforced in a variety of ways. For a step-size boundary that
coincides with the Cartesian grid, natural and Dirichlet boundary conditions are enforced by
setting the corresponding components of the velocity or derivatives to zero before computing
the interpolator coefficients.

In the case of a complex coastal problem such as Figure 1, the boundary is usually a
polygonal line. Notice that the boundary conditions cannot be enforced directly in the in-
terpolation method. Instead, we interpolate the velocity first (setting the velocity to zero for
grid points outside the domain) and apply a mask that smoothly decreases the magnitude
of the velocity or its normal component as the point approaches the boundary. Figure 4
shows an example of this procedure. The red arrows are the vectors measured by the radar,
as was shown in Figure 1. The black arrows are sampled vectors obtained with the tricubic

Figure 4. Experimentally observed velocity vectors (red arrows) in Monterey Bay,
CA (see Reference [11] for details) and sampled velocity vectors (black arrows)
resulting from the tricubic interpolation of the experimental data. Panel (a) shows
the whole bay and panel (b) enlarges a small portion of the domain close to the

coastline where a Dirichlet boundary condition has been properly enforced.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:455–47111. Paduan JD, Cook MS. Mapping surface
currents in Monterey Bay with radar-type HR
data. Oceanography 1997; 10:49–52.



IHP of d variables: extension of Lekien&Marsden’s Algorithm

The IHPs of d variables in d-dimensional cube are calculated in analytical form as an
product of one dimensional IHPs depending on each of the d variables

ϕ
κ1...κd
i1...id

(x1, ..., xd )=
d∏

s=1

ϕκs
is (xs),

∂κ
′
1+...+κ′

dϕ
κ1...κd
i1...id

∂x
κ′

1
1 ...x

κ′d
d

(x ′1, ..., x
′
d ) = δx1x′

1
...δxd x′

d
δκ1κ

′
1
...δκdκ

′
d
,

where ϕκs
is

(xs) are 1D IHPs.

In particular, for p = 1, κmax = 2, p′ = 3 the one-dimensional IHPs take the form:

ϕκs=0
is=0 (xs) = (1− xs)2(1 + 2xs), ϕκs=0

is=1 (xs) = x2
s (3− 2xs),

for polynomials whose value is equal to 1 at one node and

ϕκs=1
is=0 (xs) = (1− xs)2xs, ϕκs=1

is=1 (xs) = −x2
s (1− xs),

for polynomials whose first derivative is equal to 1 at one node.



The discrepancy δEm = Eh
m − Em of calculated eigenvalue Eh

m of the Helmholtz
problem for a square with the edge length π. Calculations were performed using
FEM with 3rd-order and 5th-order (3Ls and 5Ls) simplex Lagrange elements, and
parallelepiped Lagrange (3Lp and 5Lp) and Hermite (3Hp and 5Hp) elements. The
dimension of the algebraic problem is given in parentheses.



The discrepancy δEm = Eh
m − Em of calculated eigenvalue Eh

m of the Helmholtz
problem for a four-dimensional cube with the edge length π. Calculations were
performed using FEM with 3rd-order (3Ls) simplex Lagrange elements, and
parallelepiped Lagrange (3Lp) and Hermite (3Hp) elements. The dimension of the
algebraic problem is given in parentheses.



Resume

The algorithms for constructing the multivariate interpolation Hermite
polynomials in an analytical form in multidimensional hypercube or simplex are
presented.
Interpolation Hermite polynomials are determined from a specially constructed
set of values of the polynomials themselves and their partial derivatives.
The algorithms based on ideas of papers [a1—a5] allows us to avoid explicit
solving the system of algebraic equations or reduce it.

a1 F. Lekien and J. Marsden, International Journal for Numerical Methods in
Engineering, 63 (2005) 455–471.
a2 A. A. Gusev, et al., Lecture Notes in Computer Science, 8660 (2014) 138–154.
a3 A. A. Gusev, et al., Lecture Notes in Computer Science, 10490 (2017) 134–150.
a4 A. A. Gusev, et al., EPJ Web of Conferences, 173 (2018) 03009.
a5 A. A. Gusev, et al., EPJ Web of Conferences, 173 (2018) 03010.

Thank you for your attention




