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Abstract. Algorithm for analytical construction of multivariate Hermite in-
terpolation polynomials in a multidimensional hypercube is presented. In the
case of a d-dimensional cube, the basis functions are determined by products
of d Hermite interpolation polynomials depending on each of the d variables
given explicitly in the analytical form. The e�ciency of �nite element schemes,
algorithms and programs is demonstrated by benchmark calculations of the
4D Helmholtz problem.

Introduction

In this paper we present a new symbolic algorithm implemented in Maple for
constructing the Hermitian �nite elements or piece-wise multivariate Birkho� in-
terpolants in a standard d-dimensional cube that generalizes the construction and
algorithm proposed for a three and four dimensional cube [1, 2, 3, 4]. Our al-
gorithm realizes recurrence relations [5, 6] and yields explicit expressions in an
analytical form for the Hermite interpolation polynomials (HIPs) in opposite the
conventional constructions. The basis functions of �nite elements are high-order
polynomials, determined from a specially constructed set of values of the polyno-
mials themselves and their partial derivatives up to a given order at the vertices
of the hypercube. Such a choice of values allows us to construct a piecewise poly-
nomial basis continuous at the boundaries of �nite elements together with the
derivatives up to a given order. In the case of a d- dimensional cube, it is shown
that the basis functions are determined by products of d one-dimensional HIPs
depending on each of the d variables given in the analytical form with the deriva-
tives up to a given order continuous at the boundaries of �nite elements [6].The
e�ciency of �nite element schemes, algorithms and programs is demonstrated by
benchmark calculations of the 4D Helmholtz problem.

1. Algorithm for constructing Hermitian �nite elements

The HIPs ϕκr (x) ≡ ϕκ1...κi...κd
r1...ri...rd

(x1, ..., xi, ..., xd) of d variables in a d-dimensional
parallelepiped element x = (x1, ..., xi, ..., xd) ∈ [x1;min, x1;max]×...×[xd;min, xd;max]

= ∆q ⊂ Rd that are obtained on nodes xr1...ri...rd = (x1r1 , ..., xiri , ..., xdrd), xiri =
((p−ri)xi;min +rixi;max)/p; ri = 0, ..., p, i = 1, ..., d are determined by relations [1]

ϕκ1...κi...κd
r1...ri...rd

(x1r′1 , . . . , xir′i , . . . , xdr′d) = δr1r′1 ...δrir′i ...δrdr′dδκ10...δκi0...δκd0, (1)



2 G. Chuluunbaatar, A. Gusev, V. Gerdt, S. Vinitsky and L. L. Hai

∂κ
′
1+···+κ

′
dϕκ1...κi...κd

r1...ri...rd
(x1, . . . , xi, . . . , xd)

∂x
κ′
1

1 · · · ∂x
κ′
i
i · · ·x

κ′
d

d

∣∣∣∣∣
(x1,...,xi,...,xd)=(x1r′1

,...,xir′
i
,...,xdr′

d
)

= δr1r′1 . . . δrir′i . . . δrdr′dδκ1κ′
1
...δκiκ′

i
...δκdκ′

d
.

These HIPs of order p′ =
∏d
s=1 p

′
s are calculated as a product of one dimensional

HIPs ϕκsrs (xs): ϕ
κ
r (x) ≡ ϕκ1...κi...κd

r1...ri...rd
(x1, . . . , xi, . . . , xd)=

∏d
s=1 ϕ

κs
rs (xs), which are

calculated by the following way. For each z ≡ xs as a set of basis functions, the

1D HIPs {{ϕκr (z)}pr=0}
κmax
r −1
κ=0 of order p′ =

∑p
r=0 κ

max
r − 1 in a standard interval

z ∈ [0, 1] at the nodes zr, r = 0, . . . , p, z0 = 0, zp = 1 are constructed. The values
of the functions ϕκr (z) ∈ Cκmax−1 continuous together with their derivatives up
to order (κmax

r − 1), i.e. κ = 0, . . . , κmax
r − 1, where κmax

r is referred to as the
multiplicity [1] of the node zr, are determined by expressions (1). These 1D HIPs
are calculated analytically from the recurrence relations derived in [6]

ϕκr (z) = wr(z)

κmax
r −1∑
κ′=0

aκ,κ
′

r (z − zr)κ
′
, wr(z) =

p∏
r′=0,r′ 6=r

(
z − zr′
zr − zr′

)κmax
r′

, (2)

aκ,κ
′

r =


0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

aκ,κ
′′

r

(κ′−κ′′)!g
κ′−κ′′

r (zr), κ′ > κ,

gκr (z) =
dκwr(z)
dzκ

wr(z)
.

Below we consider only the HIPs with the nodes of identical multiplicity, κmax
r =

κmax, r = 0, ..., p, then p′ = κmax(p+ 1)−1. For example, at κmax = 2, p′ = 2p+ 1
the 1D HIPs take the form:

ϕκs=0
r (z) =

1−(z−zr)
p∑

r′=0,r′ 6=r

2

zr−z′r

 p∏
r′=0,r′ 6=r

(
z−zr′
zr−zr′

)2

,

φκs=1
r (z) = (z−zr)

p∏
r′=0,r′ 6=r

(
z−zr′
zr−zr′

)2

,

for polynomials φκs=0
r (z) or φκs=1

r (z) whose value or value of �rst derivative is
equal to 1, respectively.

2. Benchmark Calculations with Hermitian Finite Elements

As benchmark calculations we solve the 4D Helmholtz problem with the edge
length π and Neumann boundary conditions. This problem has exact degenerate
spectrum: Em =0 [1] 1 [4] 2 [6] 3 [4] 4 [5] 5 [12]6 [12] 7 [4] 8 [6] 9 [16] 10 [18] 11
[12] 12 [8] 13 [16] 14 [24] 15 [12] ... , where the multiplicity of degeneracy is given
in square brackets. The results were calculated on uniform grids using FEM with
hypercube LIPs and HIPs of the third order that are obtained by product of four
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Figure 1. The discrepancy δEm = Ehm−Em of calculated eigen-
value Ehm of the Helmholtz problem for a four-dimensional cube
with the edge length π. Calculations were performed using FEM
with 3rd-order (3Ls) and 4th-order (4Ls) simplex Lagrange ele-
ments, and 3rd-order parallelepiped Lagrange (3Lp) and Hermite
(3Hp) elements. The dimension of the algebraic problem is given
in parentheses.

1D LIPs or four 1D HIPs, respectively. They are compared with simplex LIPs of
the third and the fourth order [7].

Figure 1 shows the discrepancy δEm = Ehm − Em between the numerical
eigenvalues Ehm and the exact ones Em. There is a stepwise structure of the dis-
crepancy δEm calculated with 4D hypercubic LIPs and HIPs, with the steps ap-
pearing at the values Em = 1, 4, 9, .... The structure is also due to the prevalence
of approximation errors of eigenfunctions caused by the pure partial derivatives.
For the simplex LIPs the oscillating structure of the discrepancy δEm is due to
di�erent contributions the approximation errors caused by the di�erent mixed
partial derivatives. The calculation is performed using MAPLE with 12-digit pre-
cision. As a consequence, the FEM scheme with the hypercubic LIPs and a large
length of the eigenvectors equal to 10000 demonstrates poorer performance than
the one with a smaller length due to rounding errors. The above analysis shows the
agreement the numerical and theoretical estimations of discrepancy for eigenval-
ues,

∣∣Em − Ehm∣∣ ≤ cmh2p′ , with respect to order p′ of FEM schemes with LIPs or
HIPs, where h is the step of the uniform grid and cm > 0 are constants independent
from h.
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Conclusion

The proposed algorithm allows one to construct in analytical form a piecewise
polynomial basis continuous on the boundaries of �nite elements together with
the derivatives up to the given order. It can be used to solve elliptic BVPs as
well as other problems with partial derivatives of a high order by means of the
high-accuracy �nite element method.

The talk was partially supported by RFBR and MECSS, project 20-51-44001.
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