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Abstract. In the framework of constructive quantum mechanics, we consider
the emergence of geometry from entanglement in composite quantum systems.
We specify the most general structure of the symmetry group of a quantum
system with geometry. We show that the 2nd Rényi entanglement entropy may
be useful in applying polynomial computer algebra to model metric structures
in quantum systems with geometry.

1. Introduction

In [1, 2, 3] we proposed a constructive modification of quantum mechanics that
replaces the unitary group in a Hilbert space over the field C with the unitary
representation of a finite group in a Hilbert space over an abelian extension of
Q which is a dense subfield of R or C depending on the structure of the group.
T. Banks recently [4] analyzed this modification from the point of view of real
physics and cosmology and came to the conclusion that it “can probably be a
model of the world we observe.”

In short, constructive quantum mechanics boils down to the following. We
start with the set Ω = {e1, . . . , eN } ∼= {1, . . . ,N} of “types” of primary (“ontic”)
objects on which a permutation group G acts (T. Banks showed that it suffices
to assume that G = SN in order to “encompass finite dimensional approximations
to all known models of theoretical physics”). Let ni be the number of instances of
ontic objects of the ith type. Then the set of all objects can be described by the
vector

|n〉 = (n1, . . . , nN )
T
. (1)

These “ontic” vectors form the semimodule HΩ over the semiring of natural num-
bers N = {0, 1, 2, . . .}.

The action of G on Ω determines the permutation representation P(G) in
the semimodule HΩ. For g ∈ G, the matrix of the permutation representation has
the form P(g)i,j = δig,j . Using standard mathematical procedures, the semiring
N can be extended to a field F which is a splitting field for the group G. The
field F is a subfield of `th cyclotomic field, where ` is the exponent of the group
G. Depending on the structure of G, the field F is a dense subfield of either
R or C, i.e., F is physically indistinguishable from these continuous fields. The
extension of N to F induces the extension of the ontic semimodule HΩ to the
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Hilbert space HΩ. The inner product in this Hilbert space is a natural extension of
the standard inner product in the ontic semimodule: 〈m | n〉 =

∑N
i=1mini, where

|m〉 = (m1, . . . ,mN )
T and |n〉 = (n1, . . . , nN )

T are ontic vectors. The standard
inner product is invariant under the representation P(G))

Since F is a splitting field, we can decompose the Hilbert space HΩ into
irreducible subspaces that are invariant with respect to the representation P(G):

HΩ = H1⊕H2⊕ · · ·⊕HK .

This decomposition can be constructed algorithmically by calculating the complete
set of mutually orthogonal invariant projectors: B1, B2, . . . , BK .

1 An arbitrary
invariant subspace Hα ≤ HΩ is a direct sum of irreducible ones:

Hα = ⊕
k′∈α
Hk′ , α ⊆ {1, . . . ,K} .

Accordingly, the projection operator in Hα has the form Bα =
∑
k′∈α

Bk′ .

In any invariant subspace Hα, an independent quantum system can be con-
structed, since the results of both unitary evolutions and projective measurements
applied to any vector belonging to the subspace Hα will remain in this subspace.

The inner product for the projections |ϕ〉 = Bα |m〉 and |ψ〉 = Bα |n〉 of ontic
vectors takes the form 〈ϕ | ψ〉α = 〈m |Bα|n〉 . In terms of ontic vectors, a pure
state in the subspace Hα can be represented as the unit vector |ψ〉 = Bα|n〉√

〈n|Bα|n〉

or as the density matrix ρ = Bα|n〉〈n|Bα

〈n|Bα|n〉 . Operators of unitary evolution in the
subspace Hα have the form Uα,g = BαP(g) .

2. Symmetry Group of Composite Quantum System

The Hilbert space of an N -component quantum system has the form

H̃ = ⊗
x∈X
Hx . (2)

where X ∼= N = {1, . . . , N} . A Hilbert space that can be decomposed into a tensor
product of spaces of smaller dimensions is a special case of a general Hilbert space,
so it is natural to assume that structures like (2) arise as approximations. This is
consistent with the general “holistic” view that the partition of the system as a
whole into subsystems is always conditional and approximate.

We make the following assumptions:
• The set X of indices of “local” Hilbert spaces Hx has symmetries that form

the group G.
• The local Hilbert spaces are isomorphic, i.e., Hx ∼= H for any x ∈ X, where
H is a representative of the equivalence class of spaces Hx.

1We have developed and implemented an efficient algorithm for such calculations [5].
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• In the local space H, the unitary representation acts, which is a subrepre-
sentation of the permutation representation of the group F acting on the set
V ∼= M = {1, . . . ,M} , that is, the set V is the basis of the permutation
representation.

The set X can be interpreted as a “geometric space”, and the group G as a group of
“spatial” symmetries. The group F is interpreted as a group of “local” symmetries.

Based on the natural properties that a geometric space must have, we can
show that the group W̃ , which combines spatial and local symmetries, belongs to
an equivalence class of group extensions of the form

W̃

1 FX G 1

W̃ ′

��

��

Φ//

????

��

//
??

, (3)

where FX is a group of F -valued functions on the space X, and Φ : W̃ → W̃ ′ is a
group isomorphism that provides the commutativity of the diagram.

The set of elements of W̃ can be identified with the Cartesian product of
the sets FX and G, i.e., the elements of W̃ can be represented as pairs (f(x) , g),
where f(x) ∈ FX , g ∈ G. Explicit calculations lead to the following:
• The equivalence classes of extensions (3) are parameterized by antihomo-
morphisms of the space group, that is, by functions µ : G → G such that
µ(ab) = µ(b)µ(a) for any a, b ∈ G.
• An isomorphism of equivalent extensions has the form

Φ : (f(x) , g) 7→ (f(xϕ(g)) , g) ,

where ϕ : G→ G is an arbitrary function.
• The main group operations have the following explicit form:

v(x) (f(x) , g) = v(xµ(g)) f(xϕ(g)) , (4)

(f(x) , g) (f ′(x) , g′) =
(
f
(
xϕ(gg′)

−1
µ(g′)ϕ(g)

)
f ′
(
xϕ(gg′)

−1
ϕ(g′)

)
, gg′

)
, (5)

(f(x) , g)
−1

=

(
f
(
xϕ
(
g−1

)−1
µ(g)

−1
ϕ(g)

)−1

, g−1

)
, (6)

where (4) is the action of (f(x) , g) ∈ W̃ on the function v(x) ∈ V X ,
(5) is the group multiplication in W̃ , and (6) is the group inversion.

There are two universal (i.e., existing for any group, regardless of its specific prop-
erties) antihomomorphisms: µ(g) = 1 and µ(g) = g−1. The choice of µ(g) = 1

leads to the trivial extension, i.e., to the direct product W̃ ∼= FX ×G. The antiho-
momorphism (in fact, antiisomorphism) µ(g) = g−1 leads to a semidirect product
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of the groups FX and G, which is called the wreath product of the groups F and
G:

W̃ = F oG ∼= FX oG. (7)

As for the arbitrary function ϕ, we use two options in the implementation of our
algorithms : ϕ(g) = g−1 and ϕ(g) = 1. In these cases, expressions (4) – (6) for
group operations are more or less compact:

ϕ(g) = g−1 ϕ(g) = 1

v(x) (f(x) , g) = v
(
xg−1

)
f
(
xg−1

)
v
(
xg−1

)
f(x)

(f(x) , g) (f ′(x) , g′) = (f(x) f ′(xg) , gg′)
(
f
(
xg′
−1
)
f ′(x) , gg′

)
(f(x) , g)

−1
=

(
f
(
xg−1

)−1
, g−1

) (
f(xg)

−1
, g−1

)
The unitary representations of the group (7) in the whole Hilbert space (2) de-
scribe the quantum properties of the system as a whole. To calculate invariant
projectors and decompose permutation representations of wreath products into
irreducible components, we developed an algorithm [6], whose C implementation
splits representations having dimensions and ranks up to 1016 and 109, respectively.

3. Emergence of Geometry From Entanglement

The natural idea is to determine the distances between points in the space X in
terms of quantum correlations: the greater the correlation, the less the distance.
Quantitatively, quantum correlations are described by measures of entanglement.
The problems of constructing metrics and topology in entangled quantum systems
are considered, in particular, in [7, 8, 9].

Denote by D
(
H̃
)
the set of all states (density matrices) in the Hilbert space

(2). The set of separable states DS

(
H̃
)
consists of states ρ ∈ D

(
H̃
)
that can be

represented as weighted sums of tensor products of states of components:

ρ =
∑
k

wk ⊗
x∈X

ρkx, wk ≥ 0,
∑
k

wk = 1, ρkx ∈ D(Hx) .

The set of entangled states DE

(
H̃
)
is defined as the complement of DS

(
H̃
)
in the

set of all states: DE

(
H̃
)

= D
(
H̃
)
\ DS

(
H̃
)
.

Let ρAB denote the density matrix for a composite quantum system consist-
ing of components A and B. The statistics of observations of subsystem A are
reproduced by the reduced density matrix ρA = trB (ρAB) , where the partial trace
trB over subsystem B is defined by the relation

trB (|a1〉 〈a2| ⊗ |b1〉 〈b2|) = |a1〉 〈a2| tr (|b1〉 〈b2|) ,

which must hold for any vectors |a1〉 , |a2〉 ∈ HA and |b1〉 , |b2〉 ∈ HB .
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The constructions considered below depend on “the quantum state of the
universe”

ρX ∈ H̃ . (8)
There are a variety of entanglement measures [10]. A typical measure of entangle-
ment for the pair of points {x, y} ⊆ X is the mutual information

I(x, y) = S(ρx) + S(ρy)− S(ρxy) , (9)

where ρx = trX\{x} ρX , ρy = trX\{y} ρX , and ρxy = trX\{x,y} ρX . The function
S(ρ) is called entanglement entropy. The entanglement entropy is usually defined
as the von Neumann entropy S(ρ) = − tr(ρ log ρ) , which is the quantum version
of the Shannon entropy

H(p1, . . . , pn) = −
n∑
k=1

pk log pk , (10)

where p1, . . . , pn is a probability distribution.
From a general point of view, entropy is a function on probability distri-

butions that satisfies some natural postulates. A. Rényi proved [11] that such
functions form the following family

Hq(p1, . . . , pn) =
1

1− q
log

n∑
k=1

pqk , (11)

where q ≥ 0 and q 6= 1. The function Hq is called the Rényi entropy of order q.
The Shannon entropy (10) is a limiting case of (11): H ≡ H1 = lim

q→1
Hq. Note

that the Shannon entropy has better statistical properties compared to the Renyi
entropies with q 6= 1, for which, in particular, expression (9) can take negative
values. The entropy H2(p1, . . . , pn) = − log

∑n
k=1 p

2
k is called the collision entropy.

The quantum Rényi entropy is the quantum analogue of (11):

Sq(ρ) =
1

1− q
log tr(ρq) .

We will use the 2nd quantum Rényi entropy (quantum collision entropy)

S2(ρ) = − log tr
(
ρ2
)

(12)

as the entanglement entropy for the following reasons.
Gleason’s theorem provides a one-to-one correspondence between probability

measures on subspaces of a Hilbert space and quantum states in this space. More
specifically, the most general expression for the Born probability has the form
P = tr(ρOρS) , where ρO and ρS are quantum states of the “observer” and the
“observed system”, respectively. Since the Born rule is the only fundamental source
of probability in quantum theory, it is natural to associate a single state ρ with
some Born probability. The probability P = tr

(
ρ2
)
– “the system observes itself”

– is such a choice, and its logarithm is precisely the 2nd Rényi entropy (12).
In models of emergent space, the geodesic distance between local quantum

subsystems is determined by a certain monotonic function of the entanglement
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measure [9]. Such a “scaling” function should, at least approximately, tend to zero
for maximally entangled pairs of local subsystems, tend to infinity for separable
pairs, and satisfy the usual distance properties, such as the triangle inequality, etc.
Using the 2nd Rényi entropy as the entanglement entropy, we can get rid of the
logarithms in computer algebra calculations by replacing the mutual information
(9) with the expression

P (x, y) = exp(−I(x, y)) =
tr
(
ρ2
xy

)
tr
(
ρ2
x

)
tr
(
ρ2
y

) . (13)

For a separable pair {x, y}, we have ρxy = ρx⊗ ρy and, therefore, P (x, y) = 1 .

For a maximally entangled pair P (x, y) = (dimH)
2
, where H is the local Hilbert

space. ρxy 6= ρx⊗ ρy implies P (x, y) 6= 1, so expression (13) can quantify the
quantum correlation between x and y. For the pure state (8), expression (13) is a
combination of polynomials in the coordinates of the ontic vector (1).
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