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Abstract

The last volume of the book ”Les méthods nouvelles de la Mecanique
céleste” by [Poincaré, 1899] was published more than 120 years ago. Since
then, the following methods have arisen.

1 Method of normal forms, allowing to study regular perturbations near
a stationary solution, near a periodic solution, near an invariant torus
and so on.

2 Method of truncated systems, found with a help of the Newton poly-
hedrons, allowing to study singular perturbations.

3 Method of generating families of periodic solutions and invariant tori
(regular and singular).

4 Method of generalized problems, allowing bodies with negative
masses.

5 Computation of a net of families of periodic solutions and of invariant
tori as a “skeleton” of a part of the phase space.
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1. Normal forms (1)

Let us consider the Hamiltonian system

ξ̇j =
∂γ

∂ηj
, η̇j = − ∂γ

∂ξj
, j = 1, . . . , n (1)

with n degrees of freedom in a vicinity of the stationary solution

ξ = (ξ1, . . . , ξn) = 0, η = (η1, . . . , ηn) = 0. (2)

If the Hamiltonian function γ(ξ,η) is analytic in the point (2), then
it is expanded into the power series

γ(ξ,η) =
∑

γpqξ
pηq , (3)

where p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Zn, p,q > 0, ξp =
ξp11 ξ

p2
2 . . . ξpnn . Here γpq are constant coefficients.



1. Normal forms (2)

As the point (2) is stationary, than the expansion (3) begins from
quadratic terms. They correspond to the linear part of the system
(1). Eigenvalues of its matrix are decomposed in pairs:

λj+n = −λj , j = 1, . . . , n .

Let λ = (λ1, . . . , λn). The canonical changes of coordinates

(ξ,η) −→ (x,y) (4)

preserve the Hamiltonian structure of the system. Here x =
(x1, . . . , xn), y = (y1, . . . , yn).



1. Normal forms (3)

Theorem ([Bruno, 1972, §12])

There exists a formal canonical invertible transformation (4), bringing
the system (1) to the normal form

ẋj =
∂g

∂yj
, ẏj = − ∂g

∂xj
, j = 1, . . . , n , (5)

where the series
g(x,y) =

∑
gpqxpyq (6)

contains only resonance terms with

〈p− q,λ〉 = 0,

and the square part g2(x,y) has its own normal form (i.e. the matrix
of the system is the Hamiltonian analog of the Jordan normal form).



1. Normal forms (4)

If λ 6= 0, then the normal form (5) is equivalent to a system with
smaller number of degrees of freedom and with additional parame-
ters. The normalizing transformation (4) conserves small parameters
and linear automorphisms of the initial system (1)

(ξ,η) −→
(
ξ̃, η̃

)
, t→ t̃ .

Local families of periodic solutions satisfy the system of equations

∂g

∂yj
= λjxja ,

∂g

∂xj
= λjyja , j = 1, . . . , n ,

where a is a free parameter.



1. Normal forms (5)

For the real initial system (1), the coefficients gpq of the complex
normal form (5), (6) satisfy to special properties of reality and after
a standard canonical linear change of coordinates (x,y) → (X,Y)
the system (5) transforms in a real system [Bruno, 1994, Ch. I].

There are several methods of computation of coefficients gpq of the
normal form (5), (6). The most simple method was described in the
book [Zhuravlev (et al.), 2015].

Normal forms of periodic Hamiltonian systems was described in the
papers [Bruno, 2020b,c], see also [Bruno, 1994, Ch. II]. Normal
forms near a periodic solution, near an invariant torus and near family
of them see in [Bruno, 1994, Chs. II, VII, VIII], [Bruno, 1989, Part
II].



1. Normal forms (6)

It was shown that each periodic solution belongs to a family of them,
but only strongly unstable invariant torus belongs to a family of
invariant tori, including torus of maximal dimension [Bruno, 2020a]

Normal form is useful in study stability, bifurcations and asymptotic
behavior of solutions.
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2.1. Truncated Hamiltonian function (1)

Let x = (x1, . . . , xn), y = (y1, . . . , yn) and µ = (µ1, . . . , µs) be
canonical variables and small parameters respectively. Let a Hamil-
tonian function be

h(x,y,µ) =
∑

hpqrx
pyqµr (7)

where p = (p1, . . . , pn), xp = xp11 . . . xpnn and hpqr are constant
coefficients.



2.1. Truncated Hamiltonian function (2)

To each term of sum (7) we put in correspondence its vectorial power
exponent Q = (p,q, r) ∈ R2n+s. Set S of all points Q with hQ 6= 0
in sum (7) is called as support S = S(f) of the sum (7). The
convex hull Γ(S) = Γ(f) of the support S is called as the Newton
polyhedron of the sum (7). Its boundary consists of vertices Γ

(0)
j ,

edges Γ
(1)
j and faces Γ

(d)
j of dimensions d: 1 < d 6 2n + s − 1.

Intersection S
⋂

Γ
(d)
j = S

(d)
j is the boundary subset of set S.



2.1. Truncated Hamiltonian function (3)

To each generalized face Γ
(d)
j (including vertices and edges) there

correspond:
• normal cone U

(d)
j in space R2n+s

∗ , which is dual to space
R2n+s;
• truncated sum

ĥ
(d)
j =

∑
hpqrx

pyqµr over Q = (p,q, r) ∈ S
(d)
j .

It is the first approximation to the sum (7), when
(log |x1|, . . . , log |xn|, log |y1|, . . . , log |yn|, log |µ1|, . . . , log |µs|) →
∞ near U

(d)
j .

So by truncated Hamiltonian function we can describe the approxi-
mate problems.



2.2 Restricted 3-body problem (1)

Let the two bodies P1 and P2 with masses 1−µ and µ respectively
turn in circular orbits around their common mass center with the
period T . The plane circular restricted three-body problem consists
in the study of the plane motion of the body P3 of infinitesimal
mass under the influence of the Newton gravitation of bodies P1

and P2. In the rotating (synodical) standardized coordinate system
the problem is described by the Hamiltonian system with two degrees
of freedom and with one parameter µ.



2.2 Restricted 3-body problem (2)

The Hamiltonian function has the form

h
def
=

1

2

(
y21 + y22

)
+x2y1−x1y2−

1− µ√
x21 + x22

− µ√
(x1 − 1)2 + x22

+µx1.

(8)
Here the body P1 = {X,Y : x1 = x2 = 0}
and the body P2 = {X,Y : x1 = 1, x2 = 0},
where X = (x1, x2), Y = (y1, y2). We consider the small values of
the mass ratio µ > 0.

When µ = 0 the problem turns into the two-body problem for P1

and P3. But here the points corresponding to collisions of the bodies
P2 and P3 must be excluded from the phase space. The points of
collisions split in parts solutions to the two-body problem for P1 and
P3.



2.2 Restricted 3-body problem (3)

For small µ > 0 there is a singular perturbation of the case µ = 0
near the body P2. In order to find all the first approximations to the
restricted three-body problem, it is necessary to introduce the local
coordinates near the body P2

ξ1 = x1 − 1, ξ2 = x2, η1 = y1, η2 = y2 − 1

and to expand the Hamiltonian function in these coordinates.



2.2 Restricted 3-body problem (4)

After the expansion of 1/
√

(ξ1 + 1)2 + ξ22 in the Maclaurin series,
the Hamiltonian function (8) takes the form

h+
3

2
− 2µ

def
=

1

2
(η21 + η22) + ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22+

+f(ξ1, ξ
2
2) + µ

{
ξ21 −

1

2
ξ22 −

1√
ξ21 + ξ22

− f(ξ1, ξ
2
2)

}
,

(9)

where f is the convergent power series, where the terms of order less
then three are absent.



2.2 Restricted 3-body problem (5)

Let for each term of sum (9) we put

p = ord ξ1 + ord ξ2, q = ord η1 + ord η2, r = ordµ.

Then support S of the expansion (9) consists of the points

(0, 2, 0), (1, 1, 0), (2, 0, 0), (k, 0, 0), (2, 0, 1), (−1, 0, 1), (k, 0, 1),

where k = 3, 4, 5, . . . The convex hull of the set S is the polyhedron
Γ ⊂ R3. The surface ∂Γ of the polyhedron Γ consists of faces
Γ
(2)
j , edges Γ

(1)
j and vertices Γ

(0)
j . To each of the elements Γ

(d)
j

there corresponds the truncated Hamiltonian ĥ(d)j , that is the sum of
those terms of Series (9), the points Q = (p, q, r) of which belong
to Γ

(d)
j .



2.2 Restricted 3-body problem (6)

Fig. 1 shows the
polyhedron Γ, which
is the semi-infinite
trihedral prism with
an oblique base. It
has four faces and
six edges. Let us
consider them.

Figure 1 The polyhedron Γ for the Hamiltonian
function (9) in coordinates p, q, r.



2.2 Restricted 3-body problem (7)

The face Γ
(2)
1 ,

which is the oblique
base of the prism
Γ, contains vertices
(0, 2, 0), (2, 0, 0),
(−1, 0, 1) and the
point (1, 1, 0) ∈ S.



2.2 Restricted 3-body problem (8)

To the face there corresponds the truncated Hamiltonian function

ĥ
(2)
1 =

1

2

(
η21 + η22

)
+ ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22 −

µ√
ξ21 + ξ22

. (10)

It describes the Hill problem [Hill, 1878], which is a non-integrable
one.

The power transformation

ξ̃i = ξiµ
−1/3, η̃i = ηiµ

−1/3, i = 1, 2, (11)

reduces the corresponding Hamiltonian system to the Hamiltonian
system with the Hamiltonian function of the form (10), where ξi, ηi, µ
must be substituted by ξ̃i, η̃1, 1 respectively.



2.2 Restricted 3-body problem (9)

The face Γ
(2)
2 contains points (0, 2, 0), (1, 1, 0), (2, 0, 0) and

(k, 0, 0) ⊂ S.

To the face there cor-
responds the truncated
Hamiltonian function
ĥ
(2)
2 , which is obtained

from the function h
when µ = 0. It de-
scribes the two-body
problem for P1 and P3,
which is an integrable
one.



2.2 Restricted 3-body problem (10)

The edge Γ
(1)
1 . It includes points (0, 2, 0) and (−1, 0, 1) ⊂ S. The

corresponding truncated Hamiltonian function is

ĥ
(1)
1 =

1

2
(η21 + η22)− µ√

ξ21 + ξ22
. (12)

It describes the two-body prob-
lem for P2 and P3. The power
transformation (11) transforms it
into the Hamiltonian system with
the Hamiltonian function of the
form (12), where ξi, ηi, µ must
be substituted by ξ̃i, η̃1, 1 respec-
tively.



2.2 Restricted 3-body problem (11)

The edge Γ
(1)
2 includes points

(2, 2, 0), (1, 1, 0), (0, 2, 0) ⊂ S.
To it there corresponds the trun-
cated Hamiltonian function (10)
with µ = 0. It describes the inter-
mediate problem (between the Hill
problem and the two-body prob-
lem for P1 and P3), which is an
integrable one. This first approxi-
mation was introduced by [Hénon,
1969].



2.2 Restricted 3-body problem (12)

Thus, the first approximation to the original restricted problem with
the Hamiltonian function (9) depends on the distance from the body
P2 in the following manner:
• very close to the body P2, it is the two-body problem for

bodies P2 and P3 with the Hamiltonian function (12);
• simply close to the body P2, it is the Hill problem with

Hamiltonian (10);
• farther from the body P2, it is the intermediate Hénon

problem with Hamiltonian (10) and µ = 0;
• and far from the body P2, it is the two-body problem for

bodies P1 and P3.



2.2 Restricted 3-body problem (13)

Near the body P2, the periodic solutions to the restricted problem are
either perturbations of periodic solutions to all four mentioned first
approximations or they are results of the matching of the hyperbolic
orbits of the two-body problem for P2 and P3 with arc-solutions
to the two-body problem for P1 and P3, or to the intermediate
problem. In [Benest, 1976; Kogan, 1989; Lidov (et al.), 1990; 1993;
1994] the periodic solutions to the intermediate problem were used
as the generating ones in order to find quasi-satellite orbits of the
restricted problem.



2.3 Truncated systems (1)

Now we consider the aggregate of polynomials

f1(X), . . . , fm(X), X ∈ Rm′
or Cm′

. (13)



2.3 Truncated systems (2)

To each fi there corresponds its support and all the accompanying
objects: polyhedrons Γj , faces Γ

(dj)
jkj

, normal cones U
(dj)
jkj

, boundary

subsets S
(dj)
jkj

, truncated polynomials f̂ (dj)jkj
. Besides, to each non-

empty intersection

U
(d1)
1k1

⋂
. . .
⋂

U
(dm)
mkm

(14)

there corresponds the aggregate of truncations of the form

f̂
(d1)
1k1

, . . . , f̂
(dm)
mkm

,

which is the first approximation to the aggregate (13), when
log |X| → ∞ near the intersection (14); and it is named the trun-
cation of the aggregate (13).



2.3 Truncated systems (3)

We consider now the system of equations

fj = 0, j = 1, . . . ,m, (15)

corresponding to the aggregate (13). To System (15) there cor-
respond all objects indicated for the aggregate (13), and also the
truncated systems of equations

f̂
(dj)
jkj

= 0, j = 1, . . . ,m, (16)

each of which corresponds to one aggregate of truncations (6). We
say that the truncated system (16) is the truncation of System
(15) with respect to the order P 6= 0 if the vector P lies in the
cone (14). Every truncated system (16) is the first approximation to
one complete system (15).



2.4 Periodic solutions to periodic Hamiltonian
system (1)

Normal form of a periodic Hamiltonian function with n degrees of
freedom near zero solution is reduced to a stationary Hamiltonian
function

h(u,v,µ) =
∑

hpqrmupvqµr, (17)

where p,q ∈ Zn, r ∈ Zs, m ∈ Z, p,q, r > 0 and

〈λ,p− q〉 = −im.



2.4 Periodic solutions to periodic Hamiltonian
system (2)

For µ = 0, expansion of h (17) begins from terms of order 3. Local
families of periodic solutions to the initial system correspond to local
families of stationary points of the reduced normal form with Hamil-
tonian (9). These stationary points satisfy system of equations

∂h

∂vj
= 0,

∂h

∂uj
= 0, j = 1, . . . , n. (18)

To solve the system, we must to consider truncated systems and find
their solutions, which gives the first approximations to solutions of
the system (18).

Other applications: the Beletskii equation for oscillation of a satel-
lite [Bruno, Varin, 1997]; the problem of periodic orbits with close
approach to planet and to Earth [Bruno, 1981].
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3.1 Method

Let a Hamiltonian function H(µ) analytically depend from small pa-
rameters µ = (µ1, . . . , µs) and corresponding Hamiltonian system
has sets Mj(µ) of solutions. Some of these sets can have limits
Mj(0), when µ → 0. Sets Fj(0) are called as generating. Their
solutions are compositions of parts of solutions of the limit Hamil-
tonian system with µ = 0. Especially interesting are generating
families of periodic solutions and of invariant tori.

If that limit system is integrable, than generating families can be
described analytically. That approach was proposed by [Hénon, 1969]
for generating families of periodic solutions and was used for the Hill
problem, for the restricted three-body problem [Bruno, 1994; Hénon,
1968; Hénon, 1997; 2001], for the Belletskii equation [Bruno, Varin,
1997; 2007].



3.2 The Hill problem (1)

Its Hamiltonian function is

H =
1

2

(
η21 + η22

)
+ ξ2η1 − ξ1η2 − ξ21 +

1

2
ξ22 −

1√
ξ21 + ξ22

. (19)

The corresponding system

ξ̇j =
∂H

∂ηj
, η̇j = −∂H

∂ξj
, j = 1, 2

describes the motion of Moon (P3) with zero mass under attraction
of Sun (P1) disposed at infinity and Earth (P2) with mass 1 disposed
in origin. Hamiltonian (19) is analytic in

ξ,η ∈ R4\{ξ1 = ξ2 = 0}.



3.2 The Hill problem (2)

We make canonical transformation of coordinates

ξj = εXj , ηj = εYj , j = 1, 2.

Then we obtain the Hamiltonian system

Ẋj =
∂h

∂Yj
, Ẏj = − ∂h

∂Xj
, j = 1, 2, (20)

where

h =
1

2

(
Y 2
1 + Y 2

2

)
+X2Y1 −X1Y2 −X2

1 +
1

2
X2

2 −
1

ε3
√
X2

1 +X2
2

.



3.2 The Hill problem (3)

We put ε =
√

2|H| and H → −∞. Then in limit we obtain system
(20) with

h = h0 =
1

2

(
Y 2
1 + Y 2

2

)
+X2Y1 −X1Y2 −X2

1 +
1

2
X2

2 .

It is the Hénon’s problem. For h0 system (20) is linear and hence

integrable. It is enough to consider it for h0 =
1

2
. It has one regular

periodic solution

X1(t) = cos t, X2(t) = −2 sin t.



3.2 The Hill problem (4)

If the orbit (X1(t), X2(t)) of a solution of the Hénon problem comes
through the point

X1 = X2 = 0, (21)

then the body P3 collides with body P2 and the solution cannot
be continued through that collision. So solutions are divided into
independent parts by the point (21). Hénon, 1969 found all arc-
solutions, which begin and end by such collisions. They form the
countable set of two types. The arc-solutions of the first type were
denoted by symbol ±j, j ∈ N, and are epicycloids. In Figure 2 they
are shown for j = 1, 2, 3.



3.2 The Hill problem (5)
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Figure 2 Arc-solutions of the first type j: +1, +2 and +3.



3.2 The Hill problem (6)

The arcs with negative values of j are symmetric with respect to
the axis X2. The arc-solutions of the second type are denoted by
symbols i and e and their orbits are ellipses passing through the origin
(Figure 3).



3.2 The Hill problem (7)
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Figure 3 Arc-solutions of the second type i and e.



3.2 The Hill problem (8)

A sequence of arc-solutions which does not contain two identical
arcs of the second type in succession is a generating solution and it
is called generating sequence [Batkhin, 2013] for the Hill problem.
All known families of periodic solutions of the Hill problem include
at most one generating sequence.
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4. Generalized problems

Usually in celestial mechanics we consider bodies with non-negative
masses. But [Batkhin, 2014] proposed to consider problems, where
some masses are negative. In the Hill problem with mass of the body
P2 equal to −1 (so-called anti-Hill problem), families of periodic
solutions are continuations of families of with periodic solutions of
the usual Hill’s problem. So computation of families of periodic
solutions more convenient to make for both Hill’s and anti-Hill’s
problems. Such approach gave new families for the Hill’s problem.

Figure 4 shows diagram of connection between families of the Hill’s
(left part) and the anti-Hill’s problems (right part). Central column
gives generating sequences of the families.
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Figure 4 Diagram of connection between families.
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5. Sceletons (1)

In some parts of the phase space of a Hamiltonian system there are
a lot of families of periodic solutions and of invariant tori. These
families form a “skeleton” of the phase space. So computation of
such families is very useful for study the structure of the phase space.
[Batkhin, 2019] mentioned that in systems with a finite group of
symmetries, the majority of such families consist of periodic solutions,
with are invariant under all symmetries of the group.

There are a lot of computed families of periodic solutions in different
problems of celestial mechanics, but their number is not enough to
form a skeleton. Recent results in that directions for the restricted
three-body problem see in [Bruno, Varin, 2007; 2009a,b,c,d; 2011;
2012].



5. Sceletons (2)

A method for computation of a family of invariant tori was proposed
by Simo [Simó, 1990], but up today there are a few cases of their
computations.
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