
Implementation of algebraic algorithms for approximate pattern

matching on compressed strings

Maria Fedorkina and Alexander Tiskin

1. Pattern matching and the LCS problem

Approximate matching is a natural generalization of classical (exact) pattern matching, allowing for some
character di�erences between the pattern and a matching substring of the text. Given a pattern string p
of length m and a text string t of length n ≥ m, approximate pattern matching asks for all the substrings
of the text that are similar to the pattern. We consider the classical approach to string comparison based
on the following numerical measure of string similarity:

De�nition 1.1. Let a, b be strings. The longest common subsequence (LCS) score lcs(a, b) is the length
of the longest string that is a subsequence of both a and b. Given strings a, b, the LCS problem asks for
the LCS score lcs(a, b).

De�nition 1.2. Given strings a, b, the semi-local LCS problem asks for the LCS scores as follows:

• the whole a against every substring of b (string-substring LCS)
• every pre�x of a against every su�x of b (pre�x-su�x LCS)
• every su�x of a against every pre�x of b (su�x-pre�x LCS)
• every substring of a against the whole b (substring-string LCS)

In particular, string-substring LCS is closely related to approximate pattern matching, where a short
�xed pattern string is compared to various substrings of a long text string.

2. LCS and the sticky braid monoid

The algebraic approach to the semi-local LCS problem is based on the monoid of sticky braids.

De�nition 2.1. The sticky braid monoid (a.k.a. the 0-Hecke Monoid of the symmetric group) of order n,
denoted Tn is the monoid generated by the identity element ι and n − 1 generators g1, . . . , gn−1 de�ned
by the relations:

• g2
i = gi for all i (idempotence)

• gigj = gjgi for all i, j, j − i ≥ 2 (far commutativity)
• gigjgi = gjgigj for all i, j, j − i = 1 (braid relations)

where i, j ∈ [1 : n− 1].

The sticky braid monoid consists of n! elements, which can be represented canonically by permuta-
tions of order n. An algorithm for multiplication of sticky braids (in permutation form) in time O(n log n)
was given by the second author [4].

Intuitively speaking, the behavior of the LCS score under concatenation of strings is isomorphic to
monoid multiplication of sticky braids. Therefore, it is possible to calculate the semi-local LCS of two
strings a, b by partitioning one of the strings into two substrings and calling the algorithm recursively to
obtain the semi-local LCS scores for each substring against the other string. The semi-local LCS scores
in the subproblem and in the main problem are represented implicitly by sticky braids (in permutation
form), and the subproblems are composed by sticky braid multiplication.

3. Grammar-compressed strings

Nowadays nearly all data used in science and technology are compressed. From an algorithmic viewpoint,
it is natural to ask whether compressed strings can be processed e�ciently without decompression. Early
examples of such algorithms were given e.g. by Amir et al. [1] and by Rytter [3]; for a recent survey on the
topic, see Lohrey [2]. E�cient algorithms for compressed strings can also be applied to achieve speedup
over ordinary string processing algorithms for plain strings that are highly compressible.

The following generic compression model is well-studied, and covers many data compression formats
used in practice.

De�nition 3.1. Let t be a string of length n. String t is said to be grammar-compressed if it is generated by
a context-free grammar. A context-free grammar of length n̄ is a sequence of n̄ statements. A statement
numbered k, 1 ≤ k ≤ n̄, has either the form tk = α where α is an alphabet character, or the form tk = titj
for some i, j, 1 ≤ i, j < k. For convenience we will also allow statements of the form tk = ε, where ε is
the empty string.

We will be discussing algorithms for the comparison of a plain (uncompressed) pattern string p of
lengthm and a text string t of length n, compressed by a context-free grammar of length n̄. The algorithm
of Section 2 can be applied to perform approximate pattern matching e�ciently in this setting.

The recursive nature of grammar compression makes it natural to apply the sticky braid approach.
Since a statement produces a string that is the concatenation of two strings produced by previous state-
ments, the calculation of the implicit semi-local LCS scores for the statement requires only multiplying the
sticky braids corresponding to the previous statements using our implementation of the algorithm. The
resulting algorithm takes O(mn̄ logm) time, as it makes n̄ calls of the sticky multiplication subroutine,
each running in time O(m logm).

4. Results

We have implemented the algorithm of [4]; to the best of our knowledge, it is the �rst existing implemen-
tation of this rather intricate algorithm. We have also implemented the algorithm of Section 3 calculating
the semi-local LCS scores of a pattern p of length m and a text t compressed by a context-free grammar
of length n̄, and examined its performance on several examples of grammar-compressed strings.

Example 4.1. The n̄-th Fibonacci string is generated by the following context-free grammar:

t1 = B t2 = A t3 = t2t1 t4 = t3t2 . . . tn̄ = tn̄−1tn̄−2

E.g. the seventh Fibonacci string is �ABAABABAABAAB�.

The length n of the n̄-th Fibonacci string grows exponentially in n̄. This suggests that our algorithm,
running in time O(mn̄ logm) independent of n, should be substantially faster than the standard dynamic
programming algorithm for calculating the LCS of two strings, running in time O(mn).

We ran several experiments to examine the performance of our algorithm. In our experiments we
generated the pattern strings randomly, drawing each character independently and equiprobably from
the subset of letters of the Latin alphabet {`A', `B', `C'}. Using our algorithm, we calculated the LCS
score for the pattern against a grammar-compressed Fibonacci string. We also calculated the LCS score
for the pattern and the uncompressed Fibonacci string using dynamic programming and compared the
resulting running times.

LCS calculation times (ms)

Pattern
length

Compressed
text length

Uncompressed
text length

Sticky braids
(plain v. compressed)

Dynamic programming
(plain v. uncompressed)

4 16 987 1 0
16 16 987 6 1
64 16 987 23 6
256 16 987 74 18

4 24 46368 2 15
16 24 46368 7 55
64 24 46368 29 211
256 24 46368 116 819

4 32 2178309 2 673
16 32 2178309 10 2550
64 32 2178309 38 9778
256 32 2178309 173 40124

We can see that even though dynamic programming performs better on short strings, the sticky
braid algorithm starts to perform faster on longer strings. Additionally, the sticky braid algorithm keeps
working even on larger Fibonacci strings that do not �t into the computer's memory uncompressed.

Fibonacci strings are an arti�cial construct that is not often used in practice. We now consider a
more natural type of compression: the classical compression schemes LZ78 and LZW by Ziv, Lempel and
Welch [6, 5].

Example 4.2. The LZ78 and LZW compression schemes can both be represented a context-free grammar
consisting of three sections:

• in the �rst section, all statements are of the form tk = α;
• in the second section, the �rst statement is of the form tk = ε and all the following statements are
of the form tk = titj, where statement i, i < k, is from the second section, and statement j is from
the �rst section;

• in the third section, the �rst statement is of the form tk = ε and all the following statements are of
the form tk = tk−1tj, where statement k − 1 is from the third section, and statement j is from the
second section.

We call context-free grammars of this form LZ-grammars.

The LZ-grammar corresponding to LZ78 or LZW compression might not be substantially shorter
than the length of an uncompressed string. We construct a class of LZ-grammars corresponding to LZ78
compression that generates strings of length n growing quadratically in the grammar's length n̄.

Example 4.3. The LZ78max-grammar of length n̄ = 3r + 3 is an LZ-grammar de�ned as follows:

t0 = ε u0 = ε v0 = ε
t1 = α1 u1 = u0t1 v1 = v0u1

t2 = α2 u2 = u1t2 v2 = v1u2

.
tr = αn ur = ur−1tr vr = vr−1ur

where αk is the k-th character of the alphabet.

E.g. the LZ78max-grammar of length 18 = 3 · 5 + 3 generates the string �AABABCABCDABCDE� of
length 15.

We ran several experiments to examine the performance of our algorithm. In our experiments we
generated the pattern strings randomly, drawing each character independently and equiprobably from the
uppercase letters of the Latin alphabet. Using our algorithm, we calculated the LCS score for the pattern
against an LZ78max-grammar. We also calculated the LCS score for the pattern and the uncompressed
LZ78max-grammar string using dynamic programming and compared the resulting running times.

LCS calculation times (ms)

Pattern
length

Compressed
text length

Uncompressed
text length

Sticky braids
(plain v. compressed)

Dynamic programming
(plain v. uncompressed)

4 195 2145 15 0
16 195 2145 48 2
64 195 2145 169 8
256 195 2145 687 35

4 1539 131841 94 39
16 1539 131841 339 142
64 1539 131841 1376 532
256 1539 131841 5774 2242

4 12291 8394753 763 2594
16 12291 8394753 2807 9599
64 12291 8394753 12282 35108
256 12291 8394753 49187 153342

Again, we see that even though dynamic programming performs better on short strings, the sticky
braid algorithm starts to perform faster on longer strings.

5. Conclusion and future work

Our experiments demonstrate that the algebraic string comparison approach of [4] is not only of the-
oretical interest, but can also give substantial speedups on problems of practical signi�cance, such as
approximate matching on grammar-compressed strings, which includes the classical LZ78 and LZW com-
pression schemes as a special case. Further work may involve generalising our implementation to deal
with scoring schemes other than LCS (e.g. edit distance matching), and using it for e�cient approximate
pattern matching on large compressed datasets.

References

[1] A Amir, G Benson, and M Farach. Let Sleeping Files Lie: Pattern Matching in Z-Compressed Files. Journal
of Computer and System Sciences, 52(2):299�307, 1996.

[2] M Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptology, 4(2):241�299,
2012.

[3] W Rytter. Algorithms on Compressed Strings and Arrays. In Proceeedings of SOFSEM, volume 1725 of Lecture
notes in Computer Science, pages 48�65, 1999.

[4] Alexander Tiskin. Fast Distance Multiplication of Unit-Monge Matrices. Algorithmica, 71:859�888, 2015.

[5] T A Welch. A Technique for High-Performance Data Compression. Computer, 17(6):8�19, 1984.

[6] G Ziv and A Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions on

Information Theory, 24:530�536, 1978.

Maria Fedorkina
St. Petersburg School of Physics, Mathematics, and Computer Science
Higher School of Economics
St. Petersburg, Russia
e-mail: s17b2_fedorkina@179.ru

Alexander Tiskin
Dept. of Mathematics and Computer Science
St. Petersburg University
St. Petersburg, Russia
e-mail: a.tiskin@spbu.ru

