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Abstract. A system of ODEs with non-degenerate linear part near its sta-
tionary point are considered in two cases: in general case and in Hamiltonian
case. Solution of the problem of existence of an invariant coordinate subspace
in the coordinates of normal form is proposed as a resonance relation between
system's eigenvalues. Algorithms of computer algebra and q-subdiscriminant
technique are used for �nding such resonance relations.

Introduction

An approach of Poincaré for investigation of systems of nonlinear ordinary di�er-
ential equations was based on the maximal simpli�cation of the right-hand sides
of these equations by invertible transformations. This approach led to the theory
of normal forms (NF) of the general system and in particularly of the Hamiltonian
ones and was developed in works of G.D.Birkho�, T.M.Cherry, F.G.Gustavson,
C.L. Siegel, J.Moser, A.D.Bruno (see [1]).

The goal of the presented work is to investigate invariant coordinates sub-
spaces of NF of a real Hamiltonian system with non-degenerated linear part. The
existence of invariant subspace can reduce the phase �ow on the space of less di-
mension and in some cases can give information about periodic solution of the
whole system.

1. Invariant subspaces of normal form of ODE

Consider an analytical system of ODE

ẋ = f(x) (1)

near its stationary point x = 0. Let the linear part

ẋ = Ax, A = ∂f/∂x|x=0 , (2)
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of the system (1) be non-degenerated. Let matrix A has n eigenvalues at least one
of which is non-zero λ = (λ1, . . . , λn).

There exists [2] a formal invertible transformation g : x → y, x = g(y),
represented in the form of power series, which reduces the initial system (1) into
its normal form

De�nition 1. Normal form (NF) of the initial system (1) is a system of the form

ẏj = yjhj(y), j = 1, . . . , n, (3)

right-hand sides yjhj(y) of which are power series

yjhj(y) = yj
∑
q

hjqy
q, hj0 = λj , j = 1, . . . , n, (4)

containing only resonant terms with

〈q,λ〉 = 0. (5)

Here hjq are constant coe�cients and in yjhj(y) coordinate qj ≥ −1, but
others qk ≥ 0.

Coordinate subspace Let I = {i1, . . . , ik} be a set of increasing indices 1 ≤ i1,
ik ≤ n, k ≤ n. By KI we denote the coordinate subspace KI = {y : yj =
0 for all j 6∈ I}. All non-zero coordinates yj , j ∈ I, of the subspace KI we call
internal coordinates and denote them shortly by yI , others we call external coor-
dinates. The eigenvalues λj , j ∈ I, corresponding to the internal coordinates yI

we call internal eigenvalues and denote them by λI . Others λj , j 6∈ I, are called
external eigenvalues.

Problem. Which subspaces KI are invariant in the normal form (3), (4), (5)?

Theorem 1. The coordinate subspace KI of dimension k is invariant in the normal

form (3)�(5) if each external eigenvalue λj 6∈ λI satis�es the following condition

λj 6= 〈p,λI〉 , (6)

for all integer vectors p ≥ 0, p ∈ Zk.

Let consider an analytic Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
(7)

with n degrees of freedom near its stationary point x = y = 0. The eigenvalues of
the matrix A can be reordered in a such way: λj+n = −λj , j = 1, . . . , n. Denote by
λ = (λ1, . . . , λn). There exists [3, � 12] a canonical formal transformation which
reduces the initial system (7) into its normal form

u̇ = ∂h/∂v, v̇ = −∂h/∂u (8)

de�ned by the normalized Hamiltonian h(u,v)

h(u,v) =

n∑
j=1

λjujvj +
∑

hpqu
pvq (9)
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containing only resonant terms hpqu
pvq with

〈p− q,λ〉 = 0. (10)

By LI we denote the coordinate subspace LI = {u,v : uj = vj = 0 for all j 6∈ I}.

Problem. Which subspaces LI are invariant in the normal form (8), (9), (10)?

Theorem 2. The coordinate subspace LI of dimension 2k is invariant in the Hamil-

tonian normal form if each external eigenvalue λj 6∈ λI satis�es the following

condition

λj 6= 〈p,λI〉 , (11)

for any integer vector p 6= 0, p ∈ Zk.

The principal di�erence between condition (6) in Theorem 1 and condi-
tion (11) in Theorem 2 is that any non-zero vector p is taken from the lattice
Zk in the Hamiltonian case but it is taken for 0 ≤ p ∈ Zk in the general case.

2. Resonance �nding by q-analogue of subdiscriminants

It is immediately follows from (6) and (11) that resonant relations can be deter-
mined by eigenvalues of linear part (2). Let consider an important case when all
the eigenvalues λ are either real or pure imaginary.

Here we propose the following algorithm [4] of searching for resonant relations
which essential use technique of q-subdiscriminants [5] and elimination theory. Lets
denote by q the commensurability of a pair of eigenvalues: q = λi/λj .

Step 1: Matrix A of linear system (2) is found and its characteristic polynomial
fn(λ) is computed.

Step 2: Compute the sequence of k-th q-subdiscriminants D
(k)
q (fn), 0 ≤ k ≤

n− 2, which are polynomials in coe�cients of fn and q.
Step 3a: If q-discriminant Dq(fn) as a polynomial in annulus Z[q] can be fac-

torized then it is possible to �nd out all the pairs of resonant eigenvalues.
Step 3b: If the previous step fail then a kind of a brute force algorithm can

be applied: for mutually prime pairs (r, s) of integers we check the equality
Dq(fn) = 0 for q = r/s.

Step 4: Let for a certain value q∗ ∈ Q it is true that Dq∗(fn) = 0. Then it is
possible with the help of q-subdiscriminants from the Step 2 to determine the
structure of eigenvalues with commensurability q∗ and in some cases even to
compute them.

Step 5: Having all the commensurable eigenvalues λi it is possible to check
either conditions (6), (11) take place or no.
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3. Example

Let all λj/λ1 6∈ Z, j = 2, . . . , n. Then the normal form has two-dimensional in-
variant subspace L1 = {uj = vj = 0, j 6∈ I1}, where I1 = {1}. On the subspace L1

Hamiltonian NF (9) induces a NF with one degree of freedom and the normalizing
transformation converges.

If λ1 6= 0 and is purely imagine, then for real Hamiltonian system the real
subspace L1 is a family of periodic solutions. This fact was found by A.M. Lyapunov
in 1892 and was described with the help of Hamiltonian formalism by C. Siegel [6,
��16, 17].

Acknowledgment

The work is supported by RFBR, Project No. 18-01-00422a.

References

[1] A. D. Bruno. The Restricted 3�body Problem: Plane Periodic Orbits. Walter de
Gruyter, Berlin, 1994. = Nauka, Moscow, 1990. 296 p. (in Russian).

[2] A. D. Bruno. Analytical form of di�erential equations (I). Trans. Moscow Math. Soc.,
25:131�288, 1971. = Trudy Moskov. Mat. Obsc. 25 (1971) 119-262 (in Russian).

[3] A. D. Bruno. Analytical form of di�erential equations (II). Trans. Moscow Math. Soc.,
26:199�239, 1972. = Trudy Moskov. Mat. Obsc. 25 (1971) 119-262 (in Russian).

[4] A. B. Batkhin. Invariant coordinate subspaces of normal form of a system of ordinary
di�erential equations. Preprints of KIAM, (72), 2020. (in Russian). https://doi.
org/10.20948/prepr-2020-72 doi:10.20948/prepr-2020-72.

[5] A. B. Batkhin. Parameterization of a set determined by the generalized discriminant
of a polynomial. Programming and Computer Software, 44(2):75�85, 2018. https:
//doi.org/10.1134/S0361768818020032 doi:10.1134/S0361768818020032.

[6] C. L. Siegel and J. K. Moser. Lectures on Celestial Mechanics. Springer-Verlag, Berlin,
Heidelber, New York, 1971.

Alexander Batkhin
Department of Singular Problems
Keldysh Institute of Applied Mathematics of RAS
Department of Theoretical Mechanics
Moscow Institute of Physics and Technology
Moscow, Russia
e-mail: batkhin@gmail.com


