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Introduction

Introduction (1)

An approach of Poincaré for investigation of systems of nonlinear ordinary di�erential
equations was based on the maximal simpli�cation of the right-hand sides of these equa-
tions by invertible transformations. This approach led to the theory of normal forms (NF)
of the general system and in particularly of the Hamiltonian ones.

The theory of NF for general systems was was developed by A.Dulac & A.D.Bruno [Bruno,
1971] and in the Hamiltonian case by G.D. Birkho�, T.M. Cherry, F.G. Gustavson,
C.L. Siegel, J.Moser, A.D. Bruno and others (see [Bruno, 1994, Chs. I, II] for more
details).
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Introduction

Introduction (2)

Even though the NF is a formal object it can be used for

1 studing stability and bifurcations [Bruno, 1989],;

2 checking local integrability [Bruno (et al.), 2017];

3 searching �rst integrals, families of periodic solutions of the system [Bruno,
2020a,b];

4 asymptoting integration of the system.

The existance of invariant subspace can reduce the phase �ow on the space of less dimen-
sion and in some cases can give information about periodic solution of the whole system.
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Introduction

Introduction (3)

The goal of the presented work is to

1 investigate invariant coordinates subspaces of NF of a general and Hamiltonian
system with non-degenerated linear part;

2 present a method of searching of resonance relations between eigenvalues of linear
part of the system without their explicit computation.

The talk is based on my last preprint
Batkhin A. B. Invariant coordinate subspaces of normal form of a system of ordinary
di�erential equations. // Preprints of KIAM. 2020. No. 72. (in Russian)
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Introduction

Remark on notations

Boldface symbols like x,y,u,v denote column-vectors in n-dimensional real Rn or
complex Cn spaces.

Boldface symbols like p,q denote vectors in n-dimensional integer lattice Zn.

|p| =
∑n

j=1 |pj |.

For x = (x1, . . . , xn)
T and p = (p1, . . . , pn)

T we denote by xp ≡
n∏

j=1
x
pj
j and by

〈p,x〉 ≡
n∑

j=1
pjxj .
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Invariant subspaces General case

Linear part of system of general ODE

Consider an analytical system of ODE

ẋ = f(x) (1)

near its stationary point x = 0.

Let the linear part

ẋ = Ax, A =
∂f

∂x

∣∣∣∣
x=0

,

of the system (1) be non-degenerated. Let matrix A has n eigenvalues at least one of
which is non-zero λ = (λ1, . . . , λn).
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Invariant subspaces General case

Normal form (1)

There exists [Bruno, 1971] a formal invertible transformation g : x↔ y

x = g(y),

represented in the form of power series, which reduces the initial system (1) into its
normal form
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Invariant subspaces General case

Normal form (2)

De�nition

Normal form of the initial system (1) is a system of the form

ẏj = yjhj(y), j = 1, . . . , n, (2)

right-hand sides yjhj(y) of which are power series

yjhj(y) = yj
∑
q

hjqy
q, hj0 = λj , j = 1, . . . , n, (3)

containing only resonant terms with

〈q,λ〉 = 0. (4)

Here hjq are constant coe�cients and in yjhj(y) coordinate qj > −1, but others qk > 0.
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Invariant subspaces General case

Coordinate subspace

Let I = {i1, . . . , ik} be a set of increasing indices 1 6 i1, ik 6 n, k 6 n. By KI we
denote the coordinate subspace

KI = {y : yj = 0 for all j 6∈ I} .

All non-zero coordinates yj , j ∈ I, of the subspace KI we call internal coordinates and
denote them shortly by yI , others we call external coordinates.

The eigenvalues λj , j ∈ I, corresponding to the internal coordinates yI we call internal
eigenvalues and denote them by λI . Others λj , j 6∈ I, are called external eigenvalues.
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Invariant subspaces General case

Problem 1

Which subspaces KI are invariant in the normal form (2), (3), (4)?

Theorem 1.

The coordinate subspace KI of dimension k is invariant in the normal form (2)�(4) if

each external eigenvalue λj 6∈ λI satis�es the following condition

λj 6= 〈pI ,λI〉 , (5)

for all integer vectors pI > 0, pI ∈ Zk.
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Invariant subspaces General case

Proof of Theorem 1

Under condition (5) it follows that each series hj(y) for j 6∈ I does not contain any term
hjqy

q with indices qj = −1, qi > 0, i 6= j 6∈ I.

Since the external variables yj , j /∈ I, are equal to zero in the subspace KI , it follows
that for y ∈ KI

yjhj(y) = 0, for all j 6∈ I.

So the subspace KI is invariant in the normal form (2), (3), (4).
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Invariant subspaces Hamiltonian case

Hamiltonian system near equilibrium

We consider an analytic Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
(6)

with n degrees of freedom near its stationary point

x = y = 0.

The Hamiltonian function H(x,y) is expanded into convergent power series

H(x,y) =
∑

Hpqx
pyq

with constant coe�cients Hpq, p,q > 0, |p|+ |q| > 2.
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Invariant subspaces Hamiltonian case

Linear part of the Hamiltonian system (1)

Canonical transformations of coordinates x,y

x = f(u,v), y = g(u,v), (7)

preserve the Hamiltonian character of the initial system (6).

Let denote by z = (x,y) ∈ R2n(C2n) be the phase vector. Then the linear part of the
system (6) can be written in the form

ż = Bz, B =
1

2

(
∂2H
∂y∂x

∂2H
∂y∂y

− ∂2H
∂x∂x − ∂2H

∂x∂y

)∣∣∣∣∣
x=y=0

. (8)

Let λ1, . . . , λ2n be eigenvalues of the matrix B, which can be reordered in a such way
that λj+n = −λj , j = 1, . . . , n. Denote by λ = (λ1, . . . , λn).
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Invariant subspaces Hamiltonian case

Hamiltonian normal form

There exists [Bruno, 1972, � 12] a canonical formal transformation (7), where all f and
g are power series, which reduces the initial system (6) into its normal form

u̇ = ∂h/∂v, v̇ = −∂h/∂u (9)

de�ned by the normalized Hamiltonian h(u,v)

h(u,v) =

n∑
j=1

λjujvj +
∑

hpqu
pvq (10)

containing only resonant terms hpqu
pvq with

〈p− q,λ〉 = 0. (11)

Here 0 6 p,q ∈ Zn, |p|+ |q| > 2 and hpq are constant coe�cients.
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Invariant subspaces Hamiltonian case

Coordinate subspace

Let I = {i1, . . . , ik} be a set of increasing indices 1 6 i1, ik 6 n, k 6 n. By LI we
denote the coordinate subspace

LI = {u,v : uj = vj = 0 for all j 6∈ I} .

All non-zero coordinates wj = (uj , vj), j ∈ I, of a subspace LI we call internal coordi-
nates and denote them shortly by wI , others we call external coordinates.

The eigenvalues λj , j ∈ I, corresponding to the internal coordinates wI we call internal
eigenvalues and denote them by λI . Others λj , j 6∈ I, are called external eigenvalues.
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Invariant subspaces Hamiltonian case

Problem 2

Which subspaces LI are invariant in the normal form (9), (10), (11)?
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Invariant subspaces Hamiltonian case

Theorem 2.

The coordinate subspace LI of dimension 2k is invariant in the normal form (9)�(11) if
each external eigenvalue λj 6∈ λI satis�es the following condition

λj 6= 〈pI ,λI〉 , (12)

for any integer vector pI 6= 0, pI ∈ Zk.

Proof.

It is evident consequence of Theorem 1.
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Invariant subspaces Hamiltonian case

Remark

The principal di�erence between condition (5) in Theorem 1 and condition (12) in Theo-
rem 2 is that any non-zero vector p is taken from the lattice Zk in the Hamiltonian case
but it is taken for 0 6 p ∈ Zk in the general case.
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Invariant subspaces Examples

Example 3.1

Let eigenvalues of linear part of general ODE system equal to

λ1 = 1, λ2 =
√
2, λ3 = 1 +

√
2.

There are 3 1-D invariant subspaces Kj , j = 1,2,3, correponding to each eigenvalue λj ,
j = 1,2,3, because for any i 6= j one has λi/λj /∈ N.

2-D subspace K12 is not invariant due to resonant relation λ3 = λ1+λ2, but others K13

and K23 are invariant.
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Invariant subspaces Examples

Example 3.2

Let all λj/λ1 6∈ Z, j = 2, . . . , n. Then the normal form has two-dimensional invariant
subspace L1 = {uj = vj = 0, j 6∈ I1}, where I1 = {1}. On the subspace L1 normal
form (10) induces a Hamiltonian normal form with one degree of freedom and the nor-
malizing transformation converges.

If λ1 6= 0 and is purely imagine, then for real Hamiltonian system (6) the real subspace
L1 is a family of periodic solutions. This fact was found by A.M. Lyapunov [1892] and
was described with the help of Hamiltonian formalism by C. Siegel [Siegel (et al.), 1971,
��16, 17].
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Invariant subspaces Examples

Example 3.3 (1)

Let there exists the only pair of eigenvalues λ1, λ2 with property

λ2/λ1 = r/s

where r, s ∈ N, i.e. the multiplicity of the resonance is equal to 1.

The resonant equation (11) 〈p− q,λ〉 = 0 has two kinds of solutions, which correspond
to two types of resonant terms:

secular terms, for p = q, which always exists due to special structure of matrix B
of linearized system (8);

pure resonant terms, which corresponds to nontrivial integer solutions of the
equation 〈p,λ〉 = 0.
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Invariant subspaces Examples

Example 3.3 (2)

Let for instance the number s = 1. Then the normal form (10) contains the resonant
terms ur1v2 and vr1u2. It means that the subspace L1 can be not invariant, because the
right-hand sides of equations for variables u2, v2 have terms depending on variables u1, v1
and these right-hand sides cannot be always equal zero for the case u2 = v2 = 0.
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Invariant subspaces Examples

Example 3.4

Let there are four pairs of eigenvalues of a Hamiltonian system: one pair of real ±1,
second one of pure imagine ±i and the third and fourth ones of complex ±1 ± i. Lets
reorder these eigenvalues in a such manner:

λ1 = 1, λ2 = i, λ3 = 1 + i, λ4 = 1− i.

It is evident that there exist four two-dimensional invariant subspaces L1, L2, L3, L4.

There are six subspaces of dimension 4:

L12 is not invariant, because the external eigenvalue λ3 = λ1 + λ2.
L13 is not invariant, because the external eigenvalue λ2 = λ3 − λ1.
L14 is not invariant, because the external eigenvalue λ2 = λ1 − λ4.
L23 is not invariant, because the external eigenvalue λ1 = λ3 − λ2.
L24 is not invariant, because the external eigenvalue λ1 = λ2 + λ4.
L34 is invariant, because neither λ1 nor λ2 cannot be obtained as a linear

combination of λ3 and λ4 with integer coe�cients. Thus the condition (12)
of Theorem 2 is satis�ed.

Finally, there are no any invariant subspace of dimension 6.
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Searching for resonant relations by q-analogue of subdiscriminants

Searching for resonant relations by q-analogue of subdiscriminants

It is immediately follows from conditions of Theorems (1) and (2) that resonant relations
can be determined by eigenvalues of linear part. Let consider an important case when all
the eigenvalues λ are either real or pure imaginary.

Here we propose the method [Batkhin, 2020] of searching for resonant relations which
essential use technique of q-subdiscriminants [Batkhin, 2018; 2019] and elimination theory.
Lets denote by q the commensurability of a pair of eigenvalues: q = λi/λj .
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Searching for resonant relations by q-analogue of subdiscriminants

Method of searching for resonant relations

Step 1 Matrix A of linear system is found and its characteristic polynomial fn(λ)
is computed.

Step 2 Compute the sequence of k-th q-subdiscriminants D
(k)
q (fn), 0 ≤ k ≤ n−2,

which are polynomials in coe�cients of fn and q.

Step 3a If q-discriminant Dq(fn) as a polynomial in annulus Z[q] can be factorized
then it is possible to �nd out all the pairs of resonant eigenvalues.

Step 3b If the previous step fail then a kind of a brute force method can be applied:
for mutually prime pairs (r, s) of integers limited by a certain value |r|+|s| ≤
m we check the equality Dq(fn) = 0 for q = r/s.

Step 4 Let for a certain value q∗ ∈ Q it is true that Dq∗(fn) = 0. Then it is
possible with the help of q-subdiscriminants from the Step 2 to determine
the structure of eigenvalues with commensurability q∗ and in some cases
even to compute them.

Step 5 Having all the commensurable eigenvalues λi it is possible to check either
conditions (5), (12) take place or no.
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Searching for resonant relations by q-analogue of subdiscriminants Model example

Model example

Consider 6 identical pendulums of length l and mass m, which are connected to each
other with weightless linearly elastic springs of rigidity k length d in the unperturbed
state. Spring attachment points are located at a distance of b 6 d from the pendulum
suspension points.
These systems moves on the vertical plane and has 6 DOF.
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Searching for resonant relations by q-analogue of subdiscriminants Model example

Model example (1)

Characteristic polynomial of linear part can be written in the form

f̂6(µ) =µ
6 − 2 (5β + 3)µ5 +

(
36β2 + 50β + 15

)
µ4−

− 2
(
28β3 + 72β2 + 50β + 10

)
µ3+

+
(
35β4 + 168β3 + 216β2 + 100β + 15

)
µ2−

− 2
(
3β5 + 35β4 + 84β3 + 72β2 + 25β + 3

)
µ+

+ (2β + 1)(3β + 1)(β + 1)(β2 + 4β + 1).

where µ = λ2, and the only parameter is β =
kb2

mgl
> 0.

In CAS Maple and Mathematica q-discriminant Dq

(
f̂6

)
can be simpli�ed and factorized

into linear and quadratic factors. So it is possible to �nd all the values of q for which
rationally commensurable roots exists.
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Searching for resonant relations by q-analogue of subdiscriminants Model example

Model example (2)

In CAS SymPy q-discriminant Dq

(
f̂6

)
cannot be factorized, so brute force method was

applied for the certain value β = 48/25.

The maximal resonance order is m = 20 and a tuple of pairs (r2, s2) such that
GCD(r, s) = 1 and r + s 6 20, r, s ∈ N was constructed. Two zeroes q∗1 = 121/25 and
q∗2 = 169/25 of qdiscriminant were found. Consequently, there must be another value
q∗3 = q∗2/q

∗
1 = 169/121.

Thus we have resonant relation

5p1 + 11p2 + 13p3 = 0 (13)

between eigenvalues λ1 = 1, λ2 = 11/5, λ3 = 13/5.
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Searching for resonant relations by q-analogue of subdiscriminants Model example

Model example (3)

Relation (13) has three integer solutions

p1 = (1,−4,3), p2 = (3,1,−2), p3 = (4,−3,1).

It means that resonant condition (12) of Theorem 2 does not take place.

The system has 6-D invariant coordinate subspace in its normal coordinates LI , I =
{1,2,3}, corresponding to the eigenvalues λ1, λ2, λ3. Other eigenvalues λi, i = 4,5,6,
give three 2-D subspaces Li.

Due to the fact that the orders of integer vectors p1,p2,p3 are equal to 8, 6, 8, respec-
tively, the investigation of the source system dynamics in the subspace LI is possible only
if the nonlinear normalization of the source system is performed at least up to 6-th order
inclusive.
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Thanks for your attention!
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