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Abstract. The author's results on the exact solvability of the Euler-Poisson
equations (from classical mechanics) in special L-functions (from modular
arithmetic) are presented. The results are unexpected within the framework of
the classical approach. This requires extensive reconcilement with the already
accumulated results in this �eld (primarily with classical solutions and their
chaotic perturbations), carried out in the monograph [1] (see also [2], [3]). The
emerging general solution geometrically represents the potential of a canonical
multivalued �nitely generated analytic map of centrally-similar rotation in the
Euclidean 3d-space with a natural Galois group factor-structure.

The fundamental mechanical meaning of "analytical arithmetic solu-
tions" is the special self-oscillatory modes of the generalized (super) gyroscopic
dynamics of heavy tops (special relativistic quantum oscillations), obtained
on the base of the Kovalevskaya method for solving the original equations
and is lost by classical mechanics due to its nonrelativism (which includes
classical solidity of the con�guration space, but excludes canonical solidity of
the phase space, induced by the involution of time reversibility of the original
equations).

The obtained theoretical results agree with the experimental data of the
fundamental Dzhanibekov e�ect, clearly presented in the computer visualiza-
tion of paper [4], which also demonstrates the visualization of the Galois axis,
a new object for classical rigid body dynamics.

Euler-Poisson equations and their exact solution

The Euler-Poisson equations describing the dynamics of three-dimensional heavy
solids (tops) in a plane-parallel gravitational �eld have the form:

d
−→
M/dt=

[−→
M,−→ω

]
+k [−→γ ,−→c ] , (1)

d−→γ /dt= [−→γ ,−→ω ] , (2)

- where the corresponding vectors
−→
M = I−→ω are the kinetic moment of the body,

−→ω is the angular velocity of the body, −→c is the directing vector of the line from the
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�xed point to the center of mass, −→γ is the projections of the vertical unit vector
on the axis of the moving coordinate system, rigidly connected with the body;
- where also I is the diagonalized inertia tensor of the body at its �xed point,
k=mg|rc| is the coe�cient equal to the product of the body weight by the distance
from the �xed point to the center of mass, [ , ] is the operation of the vector product
in three-dimensional Euclidean space.

Equations (1)-(2) locally (over R) are analytic di�erential equations in the
classical sense: their coe�cients and variables are real-analytic functions of real
time t=R.

It turns out (see [1]) that the classical equations (1)-(2) de�ne a new class of
special functions are de�ned by their general solution representing the full space of
invariant (central) functions on the canonical simply connected functional globally
analytic extension of the group SO(3,R):
1. representing the "a�ne di�erential integral" on "the standard" functional

orthogonal group SOan(3,C) - C -analytic 3d-ball;
2. generated by the canonical group map of the analytic adjoint group rolling

of the standard 3d-sphere in the space E3(C) and denoted by SOan(3,C).
Theorem 1. Analytical di�erential equations (1)-(2) have an additional integral
(invariant), functionally independent with classical integrals (invariants), of the
form

F = exp
(
t2 − ω3

2−ω2
2 − ω1

2 − γ3
2−γ22 − γ1

2
)

and representing the canonical potential of a canonical group continuous centrally-
similar rotation in the space E3(C).

An additional invariant F allows us to precisely solve equations (1)-(2), since
it has the meaning of a canonical global metric on a group SO(3).
Theorem 2. The general solution of the di�erential equations (1)-(2) describing

the dynamics of the kinetic moment vector of heavy tops
−→
M(s/q/t), where t ∈ R,

q ∈ H+, s ∈ C, is represented by the canonical coordinates on analytical group
SOan(3,C) in the following forms:
−→
M(s/q)general = exp (ζ (s,∆12 (q))) , (3)

−→
M(s/q/t)general = exp

(
ζ
(
s,∆12 (q)⊗SL2(Z)PGL2 (Q (s/t))

))
, (4)

−→
M(t)general = exp

(
ζ
(
1
2+it,∆12

(q)
))

(5)

The function ζ (s,∆12 (q)) represents
- the canonical global (1-map) metric on 3d-sphere S3;
- the canonical metric in the phase space of equations (1)-(2);
- the potential of multivalued continuous monodromic dynamics of tetrahedra

accompanying analytic tops;
- the Hamiltonian of canonical (vertical) equilibrium Hamiltonian of globally

(over C ∪∞) analytical mathematical pendulum;
- the universal potential of the modular parametrization of elliptic curves

over Q;



Mechanics, Physics and Arithmetic 3

- the canonical periodic function with three pure imaginary periods - canon-
ical periods of 1) the "universal accompanying trihedron dynamics for analytic
tops", 2) the continuous involution of time reversibility of the equations (1)-(2),
3) oscillations of the globally analytic pendulum near "vertical" equilibrium (its
canonical equilibrium modulo the time reversibility of equations (1)-(2)), 4) canon-
ical periods of the universal screw motion in Euclidean 3d-space, 5) canonical pe-
riods of the 3d-Klein bottle (canonical functional generalization of classic 2d-Klein
bottle, see [1]).

Interpretive representations of the general solution

Formulas (3)-(5) represent the general solution of equations (1)-(2), having the
following interpretations:

- the canonical multivalued derived continuous monodromic dynamics of the
universal accompanying tetrahedron for analytic tops;

- the universal canonical 1-connected analytic structure on 3d-sphere S3;
- the universal canonical screw motion in three-dimensional Euclidean space;
- the phase �ow of the canonical analytic pendulum over C∪∞, which is the

canonical analytic continuation of the dynamics of the classical pendulum into its
vertical equilibrium corresponding to s, t = ∞, t ∈ R, s ∈ C.

Pendulum-oscillator realizations of the general solution:
- a pure real realization - the canonical analytical pendulum: oscillations of a

classical pendulum about its analytical equilibrium - an equivariant gluing of the
lower and upper equilibria at C∪∞ by means of the involution of time reversibility
of equations (1)-(2)(abbreviated as CAP);

- a pure imaginary realization - the canonical purely imaginary oscillator:
oscillations of the canonical globally analytic extension of the classical harmonic
oscillator (abbreviated as CAO);

- a mixed (correct diagonal quaternionic) realization - globally analytic spher-
ical pendulum, globally analytic Whitney pendulum;

- the physical realization (represents the physical meaning of the analytic
continuation of the dynamics of a classical pendulum at s = ∞) - analytically
relativistic pendulum, analytically relativistic oscillator.

The paradoxical characteristics of analytically relativistic pendulum/oscillator
are as follows: length = speed of light in vacuum, equilibrium period (!) = 281 (the
rank of continuous central symmetry mapping in space E3), oscillation period =
e281, oscillation frequency = Planck's constant (special calculation). Scalar invari-
ants 281, e281 and their connections with the QFT constants, including the noted
one, were discovered by Ya.V.Ryazantsev.

Additional interpretations of the general solution:
- dynamics of the universal axis of rotation of analytic tops representing an

operation in the group of spectral data of the inertia ellipsoid of the general top
(General Top = GT) having arbitrary analytical parameters (I,−→c );
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- the dynamics of a 3d-spherical pendulum/oscillator having a 3d-sphere
S3(C) in the con�guration space;

- the dynamics of the kinetic moment vector
−→
M(t) of heavy solids relative to

the globally analytic Euler angles φan = t, ψan = q, θan = s, where
- t (coordinate on the pendulum motion of the GT axis; on the 1d-layer

S3Hopf,an(C));
- q (coordinate on the GT precession motion; based on S3Hopf,an(C));
- s (coordinate on the nutational motion of the GT axis, on the space of the

bundle S3Hopf,an(C)),
where
- S3Hopf,an(C) is equivariant C-analytic Hopf bundle of the 3d-sphere S3;
- s is also "the �ip-�op coordinate of the Dzhanibekov e�ect", where the

vector
−→
M(t)general plays the role of the universal Galois axis (see concrete example

in [4]).
Comment on notation (see [1]). The function ∆12(q) is the only parabolic form of
weight 12 relative to the group SL2(Z):

∆12 (q)=q

∞∏
n=1

(1− qn)
24
, q=e2πiz, z ∈ H+

and the modularity (automorphicity) condition is satis�ed:

∆12(q)

(
az + b

cz + d

)
= (cz + d)

12
∆12(q),

where

1. a, b, c, d ∈ Z and ad − bc= 1, the equality de�ning the function ∆12(q) as a
modular form of weight 12;

2. ζ(s,∆12(q)) is the zeta-function of the form ∆12(q), de�ned below;
3. PGL2(Q(s/t)) - a functional extension of the group PGL2(Q) - the group of

matrices of projective linear transformations of the a�ne plane over the �eld
Q;

4. ζ(s,∆12(q)) = (2π)
−s

Γ(s+ 11/2)L∆(s),
where there is an additive representation

L∆(s) =L(s, ∆12(q)) =

∞∑
i=1

τ(n)/n11/2

ns

and accordingly, the multiplicative representation:

L∆(s) =L(s, ∆12(q)) =
∏
p

(1− τ(p)/p11/2

ps
+

1

p2s
),

where p runs over the whole set of primes.
Remark 1. The set of solutions of the transcendental equation

{ζ(s, ∆12(q)) = 0}
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presents:

1. the absolute of the canonical functional continuous extension of the Lobachevsky
3d-space over C;

2. standard 3d-sphere S3(C) (globally with one map over C∪∞);
3. the set of axes of rotation of the trivial (ball) top.

Remark 2. The form ζ(s,∆12 (q)⊗SL2(Z)PGL2 (Q (s/t))) represents the equivari-
ant continuous correction (triangulation) of the form ∆12(q) and eventually coin-
cides with the function ζ(s,∆12 (q)).

The general solution
−→
M(t)general of equations (1)-(2) in this context can be con-

sidered as the canonical global (over C∪∞) analytical correction of the parabolic
form ∆12(q).

General integral of the Euler-Poisson equations

Due to the quaternionic realization, it is possible not only to predict the existence
of the general integral of equations (1)-(2), but also to write out its explicit form:

expF =
∣∣(ω1 + iω2 + jω3)

2+(γ1 + iγ2 + jγ3)
)
|2

with the relations (boundary conditions): i2 = j2 = −1, i+ j = ij.
The invariant expF represents: 1) relations in the monodromy group of the

universal trihedron accompanying the analytic tops, 2) CAP equilibrium condi-
tion, 3) CAO boundary point condition; i - the generator of pendulum (even)
oscillations, j - the generator of rotational (odd) oscillations.

The invariant expF has the meaning of 1) the potential of canonical con-
jugation in the canonical equivariant analytic extension of quaternions, 2) the
Hamiltonian of the canonical rectilinear �ow on the 3d-Klein bottle (this is a func-
tional manifold: 1) the canonical global analytic parameter on the 3d-sphere S3
(similar to the parameter eit on the circle S1), 2) the central generating section of
the group �ow of big circles on the 3d-sphere S3, see also [1]).

Detailing the structure of the general solution of the Euler-Poisson

equations

Theorem 3. The general solution of equations (1, 2) is represented in the form:
−→
M(t, t0)general= exp (ζ (s,∆12 (q)) · ζ (s,∆12 (q))= 0) .

Theorem 4. The general solution of equations (1)-(2) is a group functional CW-
complex de�ned on the set of their particular solutions, having a canonical repre-
sentation:

−→
M(s)partial= (

−→
M(s)general)CW= exp

(
ζ(s,E/Q)

−−−−−−−→
ζ0(s,E/Q)

)
,

where
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1. E/Q runs over the set of elliptic curves over the �eld of rational numbers Q;
2. ζ(s,E/Q) is the zeta function of the elliptic curve E/Q;

the components of the vector
−−−−−−−→
ζ0(s,E/Q) are embedded in the orbit of the group

law on the curve E/Q; they determine the unrami�ed group discretization (vector-
valued grading) of the function ζ(s,E/Q) and have the form:

−−−−−−−−→
ζ0 (s,E /Q)=

= ((ζ (s1, E/Q)= 0) , (ζ (s2, E/Q)= 0) , (ζ (s3, E/Q)= 0)) ,

where the vector
−−−−−−−−→
ζ0 (s,E /Q) is a vector consisting of three consecutive nontrivial

zeros of the function ζ(s,E/Q) (its zeros with nonzero imaginary part).
Corollary 1. The functions exp(ζ(s,E/Q)) represent:

1. an ordered (according to the isogenicity classes of the E/Q curves) set of
equivalence classes of equivariant analytical parabolic modular forms with
respect to the adjoint group Ad PGL2(Q) - the group of classes of automor-
phisms of the coe�cients of spectral curves E/Q;

2. classes of the canonical C-analytic �ow of big circles on the 3d-sphere S3 -
classes of nonequivalent R-analytic 3d-spheres;

3. canonical cycles of the general solution
−→
M(s)general;

4. potentials of phase �ows of integrable cases of equations (1, 2);
5. vibration modes of a 3d-spherical pendulum/oscillator.

Corollary 2. The set of initial conditions of equations (1, 2) corresponding to
t0 ∈ R after renormalization by the mapping of the analytic continuation t →
t/ZE−P

2 (t), where ZE−P
2 (t) is the time-reversibility involution equations (1,2), is

a set of ordered vectors of the following form:

−→γ (t0)= {ζ ((s1,∗, E/Q)= 0) , ζ ((s2,∗, E/Q)= 0) , ζ ((s3,∗, E/Q)= 0)} ,
−→ω (t0)= {ζ ((s∗1, E/Q)= 0) , ζ ((s∗2, E/Q)= 0) , ζ ((s∗3, E/Q)= 0)} ,

where

1. s1,∗, s2,∗, s3,∗ - arbitrary sequential trivial zeros of the corresponding zeta
functions - zeros with the imaginary part zero;

2. s∗1, s
∗
2, s

∗
3 are arbitrary consecutive non-trivial zeros of the corresponding zeta

functions - zeros with a nonzero imaginary part.

The order on the set of indicated zeros is determined correctly:

1. trivial zeros are lying on the real line R in the complex plane C (on the GT
axis);

2. nontrivial zeros appear to lie on the straight line 1
2 + it (the "critical line")

in the complex plane C (on the GT border).

Ordered vectors −→γ (t0), −→ω (t0):

1. canonically represent the space of initial conditions for equations (1, 2) con-

sidered in analytic reversible time t/ZE−P
2 (t) (or - simply in analytical time);
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2. have the mechanical meaning of the canonical domain for determining the
set of kinetic moment axises (generators of vertical equilibrium of analytic
tops - canonical equivariant 3d-analogues of vertical equilibrium of a classical
mathematical pendulum);

3. ordered (mod 3) trivial zeros represent successive instantaneous positions of
trihedrons accompanying tops;

4. ordered (mod 3) nontrivial zeros represent the successive instantaneous po-
sitions of the tetrahedra accompanying the tops.

Theorem 5. The set of classes of particular solutions (integrable cases) represents
a group isomorphic to global (over C ∪∞) analysis of a Gauss group of roots of
the 17th degree from unity constructed by a compass and a ruler on the plane,
and implements its canonical 3d-analogue:

1. the orbits of the 3d-ruler correspond to the orbits of the vectors−→γ (t/ZE−P
2 (t));

2. the orbits of the 3d-compass correspond to the orbits of the vectors−→ω (t/ZE−P
2 (t)),

where the group operation has potential - an additional integral F .

Idea of proof: the Euler-Poisson equations are a local form of the

canonical global self-duality of the sphere S3

The key steps in the proof of the above statements are to identify and to coordi-
natizate the canonical global simply connected analytic structure on the 3d-sphere
S3 (using a global metric F ).

The geometric, mechanical and arithmetic meaning of such coordinatization
is the introduction of canonical coordinates on the monodromic self-duality motion
of the universal accompanying tetrahedron for analytic tops (where the universal
accompanying γ-tetrahedron represents "the universal modular curve over Q" and
the universal ccompanying ω-tetrahedron represents the universal elliptic curve
over Q").

This is precisely the essence of the nonclassical countable structure of the
resulting general solution of the Euler-Poisson equations.

This model also provides a correct (equivariant) theorem on the smooth de-
pendence of the solution of equations (1)-(2) from the initial conditions.

The above analytical structure is the canonical group structure of a big circle
�ow on 3d-sphere S3 and represents an equivariant functional analytic extension
of the group SO(3).

Its di�erential represents 1) the original equations (1) - (2) (over R), 2) the
general analytic perturbation theory of equation (1)-(2) (over C).
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Generalized Dzhanibekov e�ect, massive gravitons, Shafarevich-Tate

groups, modularity of elliptic curves over Q, Langlands

correspondence

Here are some aspects of the duality "analytic mechanics - analytic arithmetic".

1. The classical Dzhanibekov e�ect ([4]) is a particular solution of equations
(1)-(2) over t = C representing the minimal oscillation mode (minimal "action-
angle" variables) of CAP (see [1]).

Correctness of modeling the Dzhanibekov e�ect by equations (1) - (2): Due
to the equivalence of 1) the CAP and CAO models, 2) the CAO model and the
Aksenov-Demin-Grebenikov model of the Earth's gravitational potential (see [1]),
the general solution of equations (1)-(2) has a celestial-mechanical (relativistic
mechanical) meaning of a mathematical model of:

- the Earth's gravitational potential (over real time);

- gravitational potential of the Earth-Moon system (over complex time) - as
a general analytical perturbation of the real solution.

Conjecture. The generalized Dzhanibekov e�ect represents the classes of solutions
of equations (1)-(2) over t = C - the �nite (�nally) spectrum of modes of oscillation
of the pendulum (types of "action-angle" variables).

2. Nut in Dzhanibekov's experiment can be interpreted as a "massive gravi-
ton": zero inertial mass (because weightlessness); spin is equal to 2 (Euler's char-
acteristic of the Poisson sphere - the con�guration space of equations (1)-(2)); in a
state of relative rest the nut moves with a speed of light (the speed of a relativistic
pendulum).

In this context all arti�cial satellites of the "Earth-Moon" system under the
action of external moments have the meaning of "massive gravitons".

Note that for the "standard nut" (with the nominal width equal to 1), within
the framework of the used theoretical model, the half-period of the nut "�ip-�op"
is calculated: it is equal to 42 (this is the amplitude of odd oscillations of the
pendulum, equal to the Euler characteristic of the functional analytical sphere S3
- sphere with canonical analytic big circle �ow).

3. Conjecture. The spectrum of types of even oscillation modes of CAP is rep-
resented by the Shafarevich-Tate groups of elliptic curves over Q (see the de�nition
in [6]).

4. The modularity property of elliptic curves over Q represents 1) the trivial
mode of oscillation of CAP, 2) the canonical global continuous parameterization
on the 3d-sphere S3, 3) the phase �ow of a top with a unit inertia tensor.

The generalized Dzhanibekov e�ect represents the derived modular parametriza-
tion of eliiptic curves over Q - the canonical multivalued global simply connected
analytic parametrization of the 3d-sphere S3.
We formulate a statement that describes the connection between mechanics and
�functional arithmetic� described above, in the context of the modern apparatus of
theoretical physics � the Langlands program (see the popular exposition in [5]).
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5. Conjecture (The mechanical meaning of the Langlands correspondence).
The Galois axes, which have the meaning of generators of the mapping of the

kinetic momentum
−→
M(t)general (see Th.2), represent the orbits of the equivariant

Langlands duality for the group SO(3,R) - this is the set (sheave) of eigensections
of the canonical analytic double-covering of the sphere S3(C). The Langlands dual
group to SO(3,R) is the functional analytic simple exceptional Lie group Ean

8 (C)
(see [1]), which represents the orbit of the canonical monodromy of the canonical
global (over C∪∞) duality of the tangent and tangent sheaves to sphere S3(C)
with potential F .

Conclusion

The relationship between classical mechanics, relativistic physics and transcenden-
tal (modular) arithmetic revealed using the Euler-Poisson equations as an example
opens up the possibility of using the apparatus of "modular mathematics" in clas-
sical mechanics and quantum �eld theory.
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