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Abstract. Kruskal’s theorem states that a sum of product tensors consti-
tutes a unique tensor rank decomposition if the so-called k-ranks of the prod-
uct tensors are large. We prove a more general result in which the k-rank
condition of Kruskal’s theorem is weakened to the standard notion of rank,
and the conclusion is relaxed to a statement on the linear dependence of the
product tensors. As a corollary, we prove that if n product tensors form a cir-
cuit, then they have rank greater than one in at most n− 2 subsystems. This
generalizes several recent results in this direction, and is sharp. The proof of
the main result is based on the matroid ear decomposition technique.

For a non-negative integer n we write [n] = {1, 2, . . . , n}.
Let F be a field.
Let U be a vector space over F and let E = {e1, . . . , en} ⊂ U be a finite

multiset.
We say that E is a circuit, if all n elements of E are linearly dependent, but

any n− 1 of them are linearly independent (this is a matroid theory concept).
We say that E splits, if there exists a partition [n] = J1 ⊔ J2 such that J1, J2

are non-empty and

span{ei : i ∈ J1} ∩ span{ei : i ∈ J2} = {0}.

In other words, E splits if it is disconnected as a matroid.
Further, let m > 1 an integer, let V1, . . . ,Vm be vector spaces over F. Further

we refer to their tensor product V = V1 ⊗ · · · ⊗ Vm as a multipartite vector space.
A product tensor in V is a non-zero tensor z ∈ V of the form z = z1 ⊗ · · · ⊗ zm,
with zj ∈ Vj for all j ∈ [m]. We refer to the spaces Vj that make up the space V as
subsystems. The tensor rank (or rank) of a tensor v ∈ V, denoted by rank(v), is the
minimum number r for which v is the sum of r product tensors. A decomposition
of v into the sum of r product tensors is called a tensor rank decomposition of v.

A uniqueness of a decomposition of a tensor x as a sum of n product tensors
is understood naturally (up to permuting the summands). If a decomposition of
the tensor x as a sum of n = rank(x) product tensors is unique, it is called the
unique tensor rank decomposition.
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Recall the classical sufficient condition of the uniqueness:

Theorem 1. Let n ⩾ 2 and m ⩾ 3 be integers, V = V1⊗· · ·⊗Vm be a multipartite
vector space. Let

E = {xa,1 ⊗ · · · ⊗ xa,m : a ∈ [n]} ⊆ V (1)
be a multiset of product tensors. Assume that positive integers kj, j ∈ [m], be
such that any kj vectors in the set {x1,j , . . . , xn,j} are linearly independent. If
2n ⩽ 1 +

∑m
j=1(kj − 1), then ∑

a∈[n]

xa,1 ⊗ · · · ⊗ xa,m (2)

constitutes a unique tensor rank decomposition.

Theorem 1 was proved for m = 3 and F = R in [3], was later extended to
more than three subsystems by Sidiropoulos and Bro [7], and then to an arbitrary
field by Rhodes [6] (Landsberg’s proof also applies to an arbitrary field [4]).

Our strengthening of Theorem 1 is the following

Theorem 2. Let n ⩾ 2 and m ⩾ 2 be integers, V = V1⊗· · ·⊗Vm be a multipartite
vector space. Let E be a multiset of n product tensors (1). Assume that

2|S| ⩽ 1 +

m∑
j=1

(dim span{xa,j : a ∈ S} − 1)

for all sets S ⊂ [n] with |S| ⩾ 2. Then (2) constitutes a unique tensor rank
decomposition.

It is not hard to deduce Theorem 1 from Theorem 2. At fact, Theorem 2
implies and generalises many known sufficient conditions of the tensor rank de-
composition uniqueness. In turn, Theorem 2 follows from the following

Theorem 3. Let n ⩾ 2 and m ⩾ 2 be integers, V = V1⊗· · ·⊗Vm be a multipartite
vector space. Let E be a multiset of n product tensors (1). If

dim spanE ⩽
m∑
j=1

(dim span{xa,j : a ∈ [n]} − 1) ,

then E splits.

Theorem 2 yields many known results in the tensor rank decomposition area.
In particular, it yields a bound on the number of subsystems j ∈ [m] for

which a circuit of product tensors can have rank greater than one. Our bound
improves recent results in this vein [1, 2], and is sharp.

Corollary. Let n and m be positive integers, and let V = V1 ⊗ · · · ⊗ Vm be a
multipartite vector space over a field F. If a set of product tensors (1) forms a
circuit, then dim span{xa,j : a ∈ [n]} > 1 for at most n− 2 indices j ∈ [m].

Other applications are listed in [5].
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