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Abstract. Any Hilbert space with composite dimension can be factorized into
a tensor product of smaller Hilbert spaces. This allows to decompose a quan-
tum system into subsystems. We propose a simple tractable model for a con-
structive study of decompositions of quantum systems.

1. Introduction

Mereology is the study of the relations of part to whole and the relations of part
to part within a whole. Quantum mereology studies such issues as the bipartite
decomposition of a quantum system into a “system” and “environment”, the in-
teraction of a distinguished “system” and an “observer”, the emergence of space
and time from quantum entanglement, and other fundamental questions in quan-
tum mechanics [1, 2]. The general scheme is as follows. The whole is an isolated
quantum system1 in a given pure state undergoing a given unitary (Schrödinger)
evolution. Then, in a way chosen according to certain criteria, the system is de-
composed into a tensor product of subsystems. By reducing the “universe” density
matrix, we obtain mixed states for subsystems and can study the energies and en-
tanglement measures associated with subsystems, and their time evolution. For the
corresponding computations, involving rather tedious combinatorics, we develop a
model based on a finite formulation of quantum mechanics.

2. Factorization of a Hilbert Space

Tensor product of Hilbert spaces. The (global) Hilbert space H of a K-component
quantum system is the tensor product of the (local) Hilbert spaces Hk of the
components:

H =
K
⊗
k=1
Hk . (1)

If dimH = N and dimHk = dk, then N =
∏K
k=1 dk. For any d-dimensional

Hilbert space, we denote the ith orthonormal basis element by |i〉, that is, |0〉 =

1Obviously, in the exact sense, isolated systems do not exist (or they are fundamentally unob-
servable), with the possible exception of the Universe as a whole.
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(1, 0, . . .)
>, |1〉 = (0, 1, 0, . . .)

>, . . . , |d− 1〉 = (0, 0, . . . , 1)
>. Tensor monomials of

local basis elements form an orthonormal basis in the global Hilbert space:

|i〉 = |i1〉⊗ · · · ⊗ |ik〉⊗ · · · ⊗ |iK〉 , (2)

where |i〉 ∈ H, |ik〉 ∈ Hk and

i = i1

K∏
m=2

dm + . . .+ ik

K∏
m=k+1

dm + . . .+ iK . (3)

Tensor decomposition of a Hilbert space. We can reverse the procedure, since (2)
is a one-to-one correspondence — the sequence i1, . . . , iK is uniquely recovered
from i using formula (3).

Starting with an orthonormal basis in an N -dimensional Hilbert space H
and a decomposition N = d1 · · · dK , we can construct a particular isomorphism
between H and the tensor product of local spaces of the corresponding dimensions.

When constructing an isomorphism, we must take into account the freedom
in the choice of bases in Hilbert spaces. Any two orthonormal bases are related by
a unitary transformation. Using the properties of the tensor product, we can write

U |ψ〉 = U1 |ψ1〉⊗ · · · ⊗UK |ψK〉 = (U1⊗ · · ·⊗UK) (|ψ1〉⊗ · · · ⊗ |ψK〉)

=⇒ (U1⊗ · · ·⊗UK)
−1
U |ψ〉 = |ψ1〉⊗ · · · ⊗ |ψK〉 ,

where |ψ〉 ∈ H, |ψk〉 ∈ Hk; U, Uk are unitary transformations in the corresponding
spaces. We see that local transformations can be absorbed by the global transfor-
mation U ,2 so in general we have

U |ψ〉 = |ψ1〉⊗ · · · ⊗ |ψK〉 .

Thus, to specify a factorization of a Hilbert space H we need a decomposition of
dimH and a unitary transformation that fixes a basis in H.

3. Finite Version of Quantum Mechanics

We use a version of quantum theory [3–5] in which the groups of unitary evolutions
are replaced by linear representations of finite groups, and the field of complex
numbers is replaced by its dense constructive subfields that naturally arise from
the natural numbers and roots of unity.

2Moreover, local transformations are irrelevant for our purposes, since taking partial traces is
invariant under them.
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Permutation Hilbert space. The fact that any linear (hence unitary) representa-
tion of a finite group is a subrepresentation of some permutation representation
implies that the formalism of quantum mechanics can be completely3 reproduced
based on permutations of some set

Ω = {e1, . . . , eN } ∼= {1, . . . ,N} (4)

of primary (“ontic”) objects on which a permutation group G ≤ SN acts.
The Hilbert space on the set Ω, necessary for calculating quantum probabili-

ties, can be most economically constructed on the basis of two primitive concepts:
(a) natural numbers N = {0, 1, . . .}, abstraction of counting, and (b) roots of unity,
abstraction of periodicity.

To construct a field F sufficient for all calculations in the quantum formalism,
in particular, for splitting any representation of any subgroup of G into irreducible
components, we can proceed as follows. We extend the semiring N to the ring N [ζ`],
where ζ` is the `th primitive root of unity, and ` is the least common multiple of
the orders (periods) of the elements of G. The algebraic integer ζ` can be written
in complex form as ζ` = e2πi/`. Finally, constructing the field of fractions of the
ring N [ζ`], we arrive at the cyclotomic extension of the rationals

F = Q
(

e2πi/`
)
.

For ` > 2, the field F , being a dense subfield of C, is physically (empirically)
indistinguishable from the field of complex numbers.

Treating the set Ω as a basis, we obtain an N -dimensional Hilbert space HN
over the field F . The action of G on Ω determines the permutation representation
P in HN by the matrices

P(g)i,j = δig,j ,

where ig denotes the (right) action of g ∈ G on i ∈ Ω.
Decomposition of permutation representation. The permutation representation
of any group G has the trivial one-dimensional subrepresentation in the space
spanned by the all-ones vector

|ω〉 = (1, 1, . . . , 1︸ ︷︷ ︸
N

)>.

The complement to the trivial subrepresentation is called the standard representa-
tion. The operator of projection onto the (N − 1)-dimensional standard space H?
has the form

P? = 1N −
|ω〉〈ω|
N

.

Quantum mechanical behavior (interference, etc.) manifests itself precisely in the
standard representation. Banks made a profound observation [6] that the projec-
tion of classical permutation evolutions in the whole HN leads to truly quantum
evolutions in the subspace H? and demonstrated that the choice G = SN , where N

3Modulo empirically insignificant elements of traditional formalism such as infinities of various
kinds.
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is the number of fundamental (Planck) elements,4 makes it possible to reproduce
finite dimensional approximations to all known models of theoretical physics.
Quantum states as projections of natural vectors. SN is a rational-representation
group, i.e., its every irreducible representation (the standard representation is one
of them) is realizable over Q. This means that to describe evolutions in H?, it
is sufficient to consider only vectors with rational components.5 Taking into ac-
count that a quantum state is a ray in vector space, it is easy to show that any
quantum state in H? can be obtained by projection of vectors from HN with
natural components. These natural vectors are integer points of the nonnegative
orthant: |n〉 = (n1, . . . , nN )

> ∈ NN ⊂ HN . To build constructive models, one
need to select a finite subset in NN . Natural vectors whose coordinates belong to
the set {0, 1, . . . ,m} ,m ≥ 2, will be called mth order vectors. Quantum states
described by collinear vectors are equivalent. To eliminate this redundancy, we
can pre-project the natural vectors onto S

N−1

+ , the part of the unit sphere in the
nonnegative orthant. The total number of quantum states defined by vectors of
the mth order is not less than

2N − 2 . (5)

The area of S
N−1

+ is equal to

NπN/2

2NΓ(N/2 + 1)
≈
√
N
π

( eπ

2N

)N/2
. (6)

A rough comparison of the exponentially growing — as can be seen from (5) —
number of quantum states with the rapidly decreasing area (6) shows that for large
N , the mth order vectors represent a significant part of quantum states.
Ontic vectors. We call 2nd order vectors ontic vectors. These vectors are attractive
for both ontological and computational reasons. The ontic vector |q〉 can be written
as a bit string of length N . Interpreting this string as a characteristic function,
one can identify the ontic vector with the corresponding nontrivial subset of the
set of ontic elements (4): q ⊂ Ω. The complete set of ontic vectors is

Q = 2Ω \ {∅,Ω} , |Q| = 2N − 2 .

The inner product of ontic vectors |q〉 and |r〉 in the space HN has the
form 〈q | r〉 = 〈q&r〉, where & is the bitwise AND for bit strings, and 〈 · 〉 is the
number of ones in a bit string (population number or Hamming weight). For the
inner product of normalized projections of |q〉 and |r〉 onto H?, we have

S(q, r) ≡ 〈q |P?| r〉√
〈q |P?| q〉 〈r |P?| r〉

=
N〈q& r〉 −〈q〉 〈r〉√
〈q〉 〈∼q〉 〈r〉 〈∼r〉

,

4The number N is estimated as ∼ Exp(Exp(20)) and ∼ Exp(Exp(123)) for 1 cm3 of matter
and for the entire Universe, respectively.
5Complex numbers (nontrivial elements of cyclotomic extensions) can be required only when a
representation of a proper subgroup of SN must be split into irreducible components.
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where ∼ denotes bitwise inversion. The obvious identities 〈∼a〉 = N − 〈a〉 and
〈a& b〉+ 〈a& ∼b〉 = 〈a〉 imply the folowing symmetry with respect to transposi-
tions of subsets of the ontic set and their complements

S(q, r) = −S(∼q, r) = −S(q,∼r) = S(∼q,∼r) .

4. Decomposition of a Quantum System

Since any mixed state of a quantum system can be obtained from a pure state in
a larger Hilbert space by taking a partial trace, it is natural to assume that at a
fundamental level the state of an isolated system must be pure.6

The original permutation basis in the spaceHN , i.e., the set Ω, will be referred
as the ontic basis. In this basis, the pure density matrix in H? associated with the
ontic state |q〉 ∈ HN has the form

ρoq =
P? |q〉〈q|P?
〈q |P?| q〉

=
1

N
(|q〉 − α |ω〉) (〈q| − α 〈ω|)

α (1− α)
, (7)

where α =
〈q〉
N

is the population density. There is an obvious duality: the expression
for the density matrix ρo∼q is obtained from (7) by replacements q → ∼q and
α→ 1− α.
Energy basis. In continuous QM, the evolution of an isolated system is described
by the one-parameter unitary group Ut = e−iHt generated by the Hamiltonian
H whose eigenvalues are called energy eigenvalues. In finite QM, the evolution
is described by a unitary representation of a cyclic group U(g)

t generated by an
element g ∈ G, where t is an integer parameter. In our case, the generator of
evolution is some matrix P(g) from the permutation representation of G in HN .
We call the energy basis an orthonormal basis in which the matrix P(g) is diagonal.

Any permutation can be written as a product of disjoint cycles. It is easy to

show that the total number of cycles of length ` in the whole group SN is
N !

`
,

and, therefore, the expected number of `-cycles in a single permutation is
1

`
. That

is, high-frequency (high-energy) evolutions are more common.
The `-cycle matrix has the form

C` =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 0

 .

6This belief is expressed by the metaphor “the Church of the Larger Hilbert Space” (J.A. Smolin).
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The diagonal form of this matrix is

F`C`F
−1
` =


1 0 0 · · · 0
0 ζ` 0 · · · 0
0 0 ζ2

` · · · 0
...

...
...

...
...

0 0 0 · · · ζ`−1
`

 ,

where ζ` = e2πi/` is the `th primitive root of unity, and

F` =
1√
`


1 1 1 · · · 1

1 ζ−1
` ζ−2

` · · · ζ
−(`−1)
`

1 ζ−2
` ζ−4

` · · · ζ
−2(`−1)
`

...
...

... · · ·
...

1 ζ
−(`−1)
` ζ

−2(`−1)
` · · · ζ

−(`−1)(`−1)
`


is the Fourier transform matrix. F` is both unitary and symmetric, therefore
F−1
` = F ∗` . In general, the matrix of the permutation representation of an element

g ∈ SN is the direct sum of cyclic matrices P(g) =

M⊕
m=1

C`m , and the corresponding

diagonalizing matrix is F =

M⊕
m=1

F`m , which is the transition matrix from the ontic

basis to the energy basis. The density matrix in the energy basis can be calculated
from (7) by the formula

ρeq = FρoqF
−1.

Decomposition of a quantum state. If the basis of a space H is fixed, then the
procedure for the decomposition of a quantum system in the state ρ is reduced to
the following:

1. The factorization of dimH is chosen: dimH = d1 · . . . · dK .
2. Subsystems are identified with subsets A of the set of points

X = {1, . . . ,K} . (8)

3. The basis elements of H are identified with the tensor monomials from the
tensor product (1) in accordance with (2) and using formula (3).

4. The density matrix of the subsystem A is calculated by taking the trace over
the complement: ρA = trX\A ρ.

Having density matrices of subsystems, it is possible to calculate the physical
characteristics describing subsystems, and interactions and quantum correlations
between them: energies, entropies, mutual information and other entanglement
measures.
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5. Entanglement Measures
Quantitatively, quantum correlations are described by measures of entanglement,
which are based on the concept of entropy. The most commonly used in physics
is the von Neumann entropy S1(ρ) = − tr(ρ log ρ) . Also often used are entropies
from the Rényi family

Sα(ρ) =
1

1− α
log tr(ρα) , α ≥ 0, α 6= 1.

The common feature of the von Neumann and Rényi entropies is their additiv-
ity on combinations of independent probability distributions determined by the
eigenvalues of the density matrices. The von Neumann entropy is preferred be-
cause it additionally satisfies a stronger requirement, the chain rule for conditional
entropies.

In our calculations, we use the 2nd Rényi entropy (also called the collision
entropy) S2(ρ) = − log tr

(
ρ2
)
for the following reasons:

• It is easy to calculate: tr
(
ρ2
)

=
n∑
i=1

ρ2
ii + 2

n−1∑
i=1

n∑
j=i+1

|ρij |2 .

• The Born rule is the only fundamental source of probability in quantum
theory. The value tr

(
ρ2
)
coincides with the Born probability: “the system

observes itself.”
• The value tr

(
ρ2
)
is the Frobenius inner square of the density matrix. The

Frobenius (Hilbert-Schmidt) inner product is the most natural metric struc-
ture on matrices.

6. Illustrative Calculation

1 2 3 4 5 6 7 8 9 10 11
Subsystem size |A|

0

1

2

3

4

5

6

En
tr

op
y 
S

2(
ρ A

)

d= 2 |X|= 12 N= d
|X|

= 4096 〈
q1
〉
= 2032〈

q2
〉
= 2037〈

q3
〉
= 2037〈

q4
〉
= 2029〈

q5
〉
= 2050〈

q6
〉
= 2053〈

q7
〉
= 2058〈

q8
〉
= 2112〈

q9
〉
= 2035〈

q10
〉
= 2040
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The figure presents the values of entropy S2(ρA) computed in the ontic basis for
the decomposition N = 212. Data for subsystems of all possible sizes, computed
for ten randomly generated ontic vectors, demonstrate the following features:
• Weak dependence on the quantum state: visually, all graphs are almost iden-

tical. Note that this behavior arises for a sufficiently large number of the
decomposition components (8). In this case, |X| = 12.
• Symmetry S2(ρA) = S2

(
ρX\A

)
is a manifestation of the Schmidt bipartite

decomposition of a pure state: both matrices ρA and ρX\A have identical sets
of nonzero eigenvalues.
• For |A| noticeably smaller than |X| /2, the reduced state is close to the
maximally mixed state: S2(ρ

A
) ≈ |A| log d. In our example, d = 2.
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