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LCS problem

a, b: strings of length m, n
The longest common subsequence (LCS) score:
@ length of longest string that is a subsequence of both a and b

@ in computational biology, unweighted alignment
@ in ergodic theory, used to define the Feldman—Katok metric

@ in software engineering, the diff tool

les(“BAABCBCA”, “CABCABA") = length(“ABCBA") = 5
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LCS problem

LCS problem

LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer: 1974]
O(ﬁ) [Masek, Paterson: 1980] [Crochemore+: 2003]

[Paterson, Dan&ik: 1994] [Bille, Farach-Colton: 2008]

Polylog's exponent ¢ depends on alphabet size and computation model

LCS in time O(nz_e), € >0, m = n: impossible unless SETH false
[Abboud+: 2015] [Backurs, Indyk: 2015]
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LCS problem

LCS computation by classical dynamic programming (DP)

BAABCABCABATCA blue = 0
Bo\o 0 o\o 0 o\o 0 o\o 0-0-0 red — 1
o-1-1-1-1-1-1-1-1-1-1-1-1-1

A NN N\ NI OINID IN a = "BAABCBCA"
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B0\1 2 3\3 3 3\3 3 3\3 3=3-3 b= “BAABCABCABACA”
C0 1-2-3 4\4 4 4\4 44 4\4 4 lcs(a’b):8
B0\1 2 3\4 5 5\5 5 5\5 5-5-5
C01234\556\6666\66
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max(les(aa, b), Ies(a, bB)) if a # 8

les(aa, bB) = {Ics(a, b)+ 1 ifo—3
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LCS problem

LCS as a maximum path in the LCS grid
BAABCABCABACA blue =0

B \ \ \ red =1
ACNN N TN N N a = "BAABCBCA"
. \\\\ \\ \\\ N 5 _ “BasBcascABACA
\ \- ] \ les(a, b) =8
B \ NN TN,
N TN TN
. NNCENC T NCNEN

LCS = highest-score path top-left ~~ bottom-right
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Transposition networks

Comparison network: a circuit of comparators, each sorting a pair of values
Classical model for non-branching merging, sorting, selection. ..
Comparison networks are visualised by wire diagrams

Transposition network: all comparisons are between adjacent wires

Sorting network: comparison/transposition network that sorts the input

5 3 7 41 6 0 2 5 3 7 41 6 0 2

01 2 3 456 7
01 2 3 45 6 7
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Transposition networks

Connections to

e graph theory (expanders)
@ probability (rich theory of random transposition sorting networks)

e statistical mechanics (stochastic particle interaction processes)

Applications: parallel algorithms, network design
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Transposition networks

LCS: transposition network with binary anti-sorted (step) input

Comparators: character mismatches

Values: holes (o) and particles (o)
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Transposition networks

Semi-local LCS: transposition network with generic anti-sorted input

2 NN

PN

Comparators: character mismatches

Each value traces a strand in sticky braid (element of the Hecke monoid)
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Comparing random strings

a, b: uniformly random permutation strings of length n, alphabet size n
LCS grid: n random matches, one per grid row/column
Transposition network: n?> — n random comparisons (mismatches)

Equivalent to LIS of a uniformly random permutation

I lcs(a, b) ~ 2n'/? n— 0o [Vershik, Kerov: 1977]
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Comparing random strings

a, b: uniform Bernoulli sequences of length n, alphabet size o = O(1)
LCS grid: = n?/o random matches, one per grid row/column
Transposition network: ~ n?(1 — 1/c) random comparisons (mismatches)
E lcs(a, b) ~ von n— oo [Chvatal, Sankoff: 1975]
0 < von—Eles(a,b) < O((nlog n)1/2) [Alexander: 1994]
vYo: Chvétal-Sankoff constants

From now on, 0 =2, v =

The Chvétal-Sankoff problem: find 7; expected normalised LCS length of
a pair of equally long uniformly random binary strings

More generally, find v, for all ¢ > 2
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Comparing random strings

Precise value of v unknown

> <

[Chvatal, Sankoff: 1975] 0.697844 | 0.866595 | ~ 0.8082

[Deken, 1979] 0.7615 0.8575

[Steele, 1986] (Arratia) L 2(v2 — 1) ~ 0.8284
[Paterson, Dan&ik: 1994] | 0.77391 | 0.83763 | ~ 0.812

[Baeza-Yates et al.: 1999] ~ 0.8118

[Boutet de Monvel: 1999] ~ 0.812282
[Bundshuh: 2001] ~ 0.812653

[Lueker: 2009] 0.788071 | 0.826280 | (refutes Arratia)
[Bukh, Cox: 2022] ~ 0.8122

this work

exact equations

algebraic ~ 0.8085
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Comparing random strings

Stochastic processes in discrete time:

o discrete-time TASEP particle process (the “traffic jam” model)
@ Young diagram corner growth model
@ six-vertex model of statistical mechanics
Scaling limits well-known to exist, expressed by PDEs
[Rajewsky-+: 1997; Martin, Schmidt: 2011; Borodin+: 2016]
Approaching the Chvétal-Sankoff problem:

@ represent random LCS as a stochastic particle model
@ local fit with an easier model by polynomial equations
@ invariant distribution for both models

@ global behaviour from local invariance via scaling limit PDE
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Comparing random strings

Model CS: random LCS transposition network as a stochastic process

0100 0199
| \\ | e /0\0/0/0
O\l\\ \\i Oo{o}o{o{o
ONCTINN o OeXeseNeNo

° o 00 -
ORI OIS

Evolution variants:

@ time vertical, space horizontal, or vice versa (sequential update)

e time diagonal, space antidiagonal (sublattice-parallel update)
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Comparing random strings

Scalar conservation law

%y + % (y)=0 fluid density y(x, t) flux f(y), concave

1 x<0
Step initial condition at t = 0: y(x,0) =
p y(x,0) {0 =0
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Comparing random strings

Scalar conservation law (contd.)
Solution for t > 0:
(F)Y(x/t) f(1)t < x < f'(0)t (rarefaction wave)
vt = {y(x, 0) otherwise (frozen area)
Assume 0 < y <1, f(0) = f(1) = 0: natural for fluid density/flux
Peak flux f = f(7) at density y = (f')~(0) = y(0,1)
Assume f symmetric: f(y) =f(1—y) y=1
f = f(1) = mass transported across origin x =0 by t = 1

v =1—f in model CS
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Comparing random strings

Scaling limit asymptotics for a particle-hole process
Time diagonal, space antidiagonal
Denote z = 1 — z, conditional probabilities A | £ (condition in red)
Consider a small neighbourhood of x =0, t =1
o particle-hole symmetry: u = - =06, i =-0=¢

o provides peak flux: f = f

Swapratep:[é}:/li(} Fluxz?:f:{%)}:f-p
To obtain  for model CS, must study carefully dependencies between
@ site values o-, e, 0, @

o cell types \, /, as determined by characters of a, b
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Comparing random strings

Model B(1/2) (the Bernoulli model)
Arratia—Steele conjecture: pretend types of all cells mutually independent
[Steele: 1986; Seppaldinen: 1997; Majumdar, Nechaev: 2005; .. .]

Motivation:

o cell types independent in triples (in particular, H--shapes)
@ ...but not in quadruples (H}-shape completes square uniquely)
e perhaps H-shape dependence doesn't matter?
Swap rate p = [6}:/2%
Time-invariant distribution: all sites independent (more on next slide)
vB(/2) = 2(/2 — 1) ~ 0.8284 # ~
Conjecture disproved by upper bound [Lueker: 2009]
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Comparing random strings

Model B (the generalised Bernoulli model)

Separate p =/ = % into conditional probabilities

@ swap rate pp = §/ now free to be # %
@ pseudo-rates pg =&y ~p3 =4/, p1 =&/

Swap rate balanced out by pseudo-rates to preserve / = %

Time-invariant distribution: alternating Bernoulli (AB) sequence

@ doubly-infinite; space-invariant under shift / — / 4+ 1 and reversal
i — —i — 1 with simultaneous exchange of o and e

o all sites mutually independent

AB sequence parameter u = -e- determined by swap rate pp
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Comparing random strings

Model B (contd.)

Fit (pseudo-)rates to model CS locally in a neighbourhood of x =0, t =1
via equations in (pseudo-)rates and the parameter of AB sequence

@ time-invariance equations: 1 time step; link u with p, for model B
@ string matching equations: 3 time steps; link models B, CS
o total probability: Gip, + 2uiipy 4 uupy = 3 +267 +&F =7 = :

Solve by Mathematica's Solve, option Quartics -> True

u=/T~ /B2 1~ 0407025

p2=—3%+ 3u—19u% — 403 ~ 0.528838
vB =1—fB =1— up, ~ 0.814050 # v
Fit not perfect: AB property not expressed fully by equations
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Comparing random strings

Model M (the Markov model)

Swap partial rates ps = ] f/J’ p4 = ] j/J >~ p13 = ) Jf/, p12 = Rz

Pseudo-rates paped = ;7 abed € {0,...,15}\ {5,4,13,12}

-4

Time-invariant distribution: alternating second-order Markov (AM2)
sequence

@ doubly-infinite; space-invariant under shift /i — i 4+ 1 and reversal
i — —i — 1 with simultaneous exchange of o and e

e conditioned on adjacent site pair (&;,&;41), infinite prefix
(...,&—2,&—1) independent of infinite suffix (&42,&i43,...)

AM?2 sequence parameters u = -e-, v, = ‘* Wap = 4* determined by
swap partial rates ps, ps = p13, P12
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Comparing random strings

Model M (contd.)

Fit (pseudo-)rates to model CS locally in a neighbourhood of x =0, t =1
via equations in (pseudo-)rates and the parameters of AM2 sequence

@ time-invariance equations: 1 time step; link u, v,, wsp with ps,
ps = p13, p12 for model M

@ string matching equations: 3 time steps; link models M, CS
o total probability: >, , . gefo.e} 655] =/=3
Perfect fit: AM2 property expressed by polynomial equations, v = v™

Equation coefficients 1 and 2; hence, ~y is algebraic

Closed-form expression unlikely due to complexity of equations
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Comparing random strings

Experiment options
“Naive" (very slow convergence)

@ generate long random strings; compute LCS; repeat
Simulating model CS (done; slow convergence)

@ initialise with AB sequence for t =0

@ run model CS to stationary state (max 20 time steps)

o bit-parallel LCS [Crochemore+: 2003] and various optimisations
Solving iteratively for model M parameters (assumes model’s correctness)
Current estimate v ~ 0.8085

Needs extra confirmation/reconciling with previous work
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Conclusions

The Chvatal-Sankoff problem: expected normalised LCS length ~ of a pair
of equally long uniformly random binary strings

Expressed as hydrodynamic limit of stochastic particle process (model CS)

Linked with another stochastic process (model M): local fitting in a small
neighbourhood of main diagonal

Flux for model M expressed by a (large) system of algebraic equations
@ implies that + is algebraic
@ closed-form solution unlikely due to equations’ complexity

Essentially resolves the Chvatal-Sankoff problem (with a somewhat
negative flavour)

Numerical solution: several options, work in progress
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Conclusions

Further work:

distribution properties beyond expectation « (e.g. Tracey-Widom?)
strings of unequal length, limit shape (similar but more cumbersome)
skewed character distribution (challenging, no H--independence)
Levenshtein distance (special case of ternary strings)

ternary or larger alphabet (challenging, no HFuniqueness)

more than two strings (looks hopeless)
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