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LCS problem

a, b: strings of length m, n

The longest common subsequence (LCS) score:

length of longest string that is a subsequence of both a and b

in computational biology, unweighted alignment

in ergodic theory, used to define the Feldman–Katok metric

in software engineering, the diff tool

lcs(“BAABCBCA”, “CABCABA”) = length(“ABCBA”) = 5
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LCS problem

LCS problem

LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer: 1974]
O
(

mn
(log n)c

)
[Masek, Paterson: 1980] [Crochemore+: 2003]

[Paterson, Danč́ık: 1994] [Bille, Farach-Colton: 2008]

Polylog’s exponent c depends on alphabet size and computation model

LCS in time O(n2−ε), ε > 0, m = n: impossible unless SETH false
[Abboud+: 2015] [Backurs, Indyk: 2015]
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LCS problem

LCS computation by classical dynamic programming (DP)
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blue = 0
red = 1

a = “BAABCBCA”

b = “BAABCABCABACA”

lcs(a, b) = 8

lcs(a, ∅) = 0

lcs(∅, b) = 0
lcs(aα, bβ) =

{
max(lcs(aα, b), lcs(a, bβ)) if α 6= β

lcs(a, b) + 1 if α = β
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LCS problem

LCS as a maximum path in the LCS grid
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Transposition networks

Comparison network: a circuit of comparators, each sorting a pair of values

Classical model for non-branching merging, sorting, selection. . .

Comparison networks are visualised by wire diagrams

Transposition network: all comparisons are between adjacent wires

Sorting network: comparison/transposition network that sorts the input
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Transposition networks

Connections to

graph theory (expanders)

probability (rich theory of random transposition sorting networks)

statistical mechanics (stochastic particle interaction processes)

Applications: parallel algorithms, network design
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Transposition networks

LCS: transposition network with binary anti-sorted (step) input
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Comparators: character mismatches

Values: holes (◦) and particles (•)
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Transposition networks

Semi-local LCS: transposition network with generic anti-sorted input
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Comparators: character mismatches

Each value traces a strand in sticky braid (element of the Hecke monoid)
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Comparing random strings

a, b: uniformly random permutation strings of length n, alphabet size n

LCS grid: n random matches, one per grid row/column

Transposition network: n2 − n random comparisons (mismatches)

Equivalent to LIS of a uniformly random permutation

E lcs(a, b) ∼ 2n1/2 n→∞ [Vershik, Kerov: 1977]
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Comparing random strings

a, b: uniform Bernoulli sequences of length n, alphabet size σ = O(1)

LCS grid: ≈ n2/σ random matches, one per grid row/column

Transposition network: ≈ n2(1− 1/σ) random comparisons (mismatches)

E lcs(a, b) ∼ γσn n→∞ [Chvátal, Sankoff: 1975]

0 ≤ γσn − E lcs(a, b) ≤ O
(
(n log n)1/2

)
[Alexander: 1994]

γσ: Chvátal–Sankoff constants

From now on, σ = 2, γ = γ2

The Chvátal–Sankoff problem: find γ; expected normalised LCS length of
a pair of equally long uniformly random binary strings

More generally, find γσ for all σ ≥ 2
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Comparing random strings

Precise value of γ unknown

γ > γ <

[Chvátal, Sankoff: 1975] 0.697844 0.866595 ≈ 0.8082
[Deken, 1979] 0.7615 0.8575

[Steele, 1986] (Arratia)
?
= 2(
√

2− 1) ≈ 0.8284
[Paterson, Danč́ık: 1994] 0.77391 0.83763 ≈ 0.812
[Baeza-Yates et al.: 1999] ≈ 0.8118
[Boutet de Monvel: 1999] ≈ 0.812282
[Bundshuh: 2001] ≈ 0.812653
[Lueker: 2009] 0.788071 0.826280 (refutes Arratia)
[Bukh, Cox: 2022] ≈ 0.8122

this work exact equations algebraic ≈ 0.8085
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Comparing random strings

Stochastic processes in discrete time:

discrete-time TASEP particle process (the “traffic jam” model)

Young diagram corner growth model

six-vertex model of statistical mechanics

Scaling limits well-known to exist, expressed by PDEs
[Rajewsky+: 1997; Martin, Schmidt: 2011; Borodin+: 2016]

Approaching the Chvátal–Sankoff problem:

represent random LCS as a stochastic particle model

local fit with an easier model by polynomial equations

invariant distribution for both models

global behaviour from local invariance via scaling limit PDE
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Comparing random strings

Model CS : random LCS transposition network as a stochastic process
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Evolution variants:

time vertical, space horizontal, or vice versa (sequential update)

time diagonal, space antidiagonal (sublattice-parallel update)
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Comparing random strings

Scalar conservation law

∂
∂t y + ∂

∂x f (y) = 0 fluid density y(x , t) flux f (y), concave

Step initial condition at t = 0: y(x , 0) =

{
1 x < 0

0 x > 0
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Comparing random strings

Scalar conservation law (contd.)

Solution for t > 0:

y(x , t) =

{
(f ′)−1(x/t) f ′(1)t ≤ x ≤ f ′(0)t (rarefaction wave)

y(x , 0) otherwise (frozen area)

Assume 0 ≤ y ≤ 1, f (0) = f (1) = 0: natural for fluid density/flux

Peak flux f̃ = f (ỹ) at density ỹ = (f ′)−1(0) = y(0, 1)

Assume f symmetric: f (y) = f (1− y) ỹ = 1
2

f̃ = f
(

1
2

)
= mass transported across origin x = 0 by t = 1

γ = 1− f̃ in model CS
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Comparing random strings

Scaling limit asymptotics for a particle-hole process

Time diagonal, space antidiagonal

Denote z̄ = 1− z , conditional probabilities A | B (condition in red)

Consider a small neighbourhood of x = 0, t = 1

particle-hole symmetry: u = = ; ū = =

provides peak flux: f̃ = f

Swap rate p = = | Flux f̃ = f = = · p

To obtain f̃ for model CS , must study carefully dependencies between

site values , , ,

cell types , , as determined by characters of a, b
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Comparing random strings

Model B(1/2) (the Bernoulli model)

Arratia–Steele conjecture: pretend types of all cells mutually independent

[Steele: 1986; Seppäläinen: 1997; Majumdar, Nechaev: 2005; . . . ]

Motivation:

cell types independent in triples (in particular, -shapes)

. . . but not in quadruples ( -shape completes square uniquely)

perhaps -shape dependence doesn’t matter?

Swap rate p = = = 1
2

Time-invariant distribution: all sites independent (more on next slide)

γB(1/2) = 2(
√

2− 1) ≈ 0.8284 6= γ

Conjecture disproved by upper bound [Lueker: 2009]
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Comparing random strings

Model B (the generalised Bernoulli model)

Separate p = = 1
2 into conditional probabilities

swap rate p2 = now free to be 6= 1
2

pseudo-rates p0 = ' p3 = , p1 =

Swap rate balanced out by pseudo-rates to preserve = 1
2

Time-invariant distribution: alternating Bernoulli (AB) sequence

doubly-infinite; space-invariant under shift i 7→ i + 1 and reversal
i 7→ −i − 1 with simultaneous exchange of ◦ and •
all sites mutually independent

AB sequence parameter u = determined by swap rate p2
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Comparing random strings

Model B (contd.)

Fit (pseudo-)rates to model CS locally in a neighbourhood of x = 0, t = 1
via equations in (pseudo-)rates and the parameter of AB sequence

time-invariance equations: 1 time step; link u with p2 for model B

string matching equations: 3 time steps; link models B, CS

total probability: ūūp2 + 2uūp0 + uup1 = + 2 + ≡ = 1
2

Solve by Mathematica’s Solve, option Quartics -> True

u =
√

7
3 −

√
23−5

√
21

6 − 1 ≈ 0.407025

p2 = −2
3 + 34

3 u − 19u2 − 4u3 ≈ 0.528838

γB = 1− f B = 1− ūup2 ≈ 0.814050 6= γ

Fit not perfect: AB property not expressed fully by equations
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Comparing random strings

Model M (the Markov model)

Swap partial rates p5 = , p4 = ' p13 = , p12 =

Pseudo-rates pabcd =
a
b
c
d

abcd ∈ {0, . . . , 15} \ {5, 4, 13, 12}

Time-invariant distribution: alternating second-order Markov (AM2)
sequence

doubly-infinite; space-invariant under shift i 7→ i + 1 and reversal
i 7→ −i − 1 with simultaneous exchange of ◦ and •
conditioned on adjacent site pair (ξi , ξi+1), infinite prefix
(. . . , ξi−2, ξi−1) independent of infinite suffix (ξi+2, ξi+3, . . .)

AM2 sequence parameters u = , va = a , wab =
a
b determined by

swap partial rates p5, p4 = p13, p12
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Comparing random strings

Model M (contd.)

Fit (pseudo-)rates to model CS locally in a neighbourhood of x = 0, t = 1
via equations in (pseudo-)rates and the parameters of AM2 sequence

time-invariance equations: 1 time step; link u, va, wab with p5,
p4 = p13, p12 for model M

string matching equations: 3 time steps; link models M, CS

total probability:
∑

a,b,c,d∈{◦,•}
a
b
c
d ≡ = 1

2

Perfect fit: AM2 property expressed by polynomial equations, γ = γM

Equation coefficients 1 and 2; hence, γ is algebraic

Closed-form expression unlikely due to complexity of equations
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Comparing random strings

Experiment options

“Naive” (very slow convergence)

generate long random strings; compute LCS; repeat

Simulating model CS (done; slow convergence)

initialise with AB sequence for t = 0

run model CS to stationary state (max 20 time steps)

bit-parallel LCS [Crochemore+: 2003] and various optimisations

Solving iteratively for model M parameters (assumes model’s correctness)

Current estimate γ ≈ 0.8085

Needs extra confirmation/reconciling with previous work
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Conclusions

The Chvátal–Sankoff problem: expected normalised LCS length γ of a pair
of equally long uniformly random binary strings

Expressed as hydrodynamic limit of stochastic particle process (model CS)

Linked with another stochastic process (model M): local fitting in a small
neighbourhood of main diagonal

Flux for model M expressed by a (large) system of algebraic equations

implies that γ is algebraic

closed-form solution unlikely due to equations’ complexity

Essentially resolves the Chvátal–Sankoff problem (with a somewhat
negative flavour)

Numerical solution: several options, work in progress
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Conclusions

Further work:

distribution properties beyond expectation γ (e.g. Tracey–Widom?)

strings of unequal length, limit shape (similar but more cumbersome)

skewed character distribution (challenging, no -independence)

Levenshtein distance (special case of ternary strings)

ternary or larger alphabet (challenging, no -uniqueness)

more than two strings (looks hopeless)
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