The Chvátal-Sankoff problem: Understanding random string comparison through stochastic processes

Alexander Tiskin

Department of Mathematics and Computer Science, St Petersburg University

LCS problem

a, b : strings of length m, n
The longest common subsequence (LCS) score:

- length of longest string that is a subsequence of both a and b
- in computational biology, unweighted alignment
- in ergodic theory, used to define the Feldman-Katok metric
- in software engineering, the diff tool
$\operatorname{lcs}($ "BAABCBCA", "CABCABA") $=$ length("ABCBA") $=5$

LCS problem

LCS problem

LCS score for a vs b

LCS: running time

$O(m n)$
$O\left(\frac{m n}{(\log n)^{c}}\right)$
[Wagner, Fischer: 1974]
[Masek, Paterson: 1980] [Crochemore+: 2003] [Paterson, Dančík: 1994] [Bille, Farach-Colton: 2008]

Polylog's exponent c depends on alphabet size and computation model LCS in time $O\left(n^{2-\epsilon}\right), \epsilon>0, m=n$: impossible unless SETH false [Abboud+: 2015] [Backurs, Indyk: 2015]

LCS problem

LCS computation by classical dynamic programming (DP)

LCS problem

LCS as a maximum path in the LCS grid

$$
\begin{array}{r}
b l u e=0 \\
\text { red }=1 \\
a=\text { "BAABCBCA" } \\
b=\text { "BAABCABCABACA" } \\
\operatorname{lcs}(a, b)=8
\end{array}
$$

LCS $=$ highest-score path top-left \rightsquigarrow bottom-right

Transposition networks

Comparison network: a circuit of comparators, each sorting a pair of values
Classical model for non-branching merging, sorting, selection. . .
Comparison networks are visualised by wire diagrams
Transposition network: all comparisons are between adjacent wires
Sorting network: comparison/transposition network that sorts the input

Transposition networks

Connections to

- graph theory (expanders)
- probability (rich theory of random transposition sorting networks)
- statistical mechanics (stochastic particle interaction processes)

Applications: parallel algorithms, network design

Transposition networks

LCS: transposition network with binary anti-sorted (step) input

Comparators: character mismatches
Values: holes (○) and particles (॰)

Transposition networks

Semi-local LCS: transposition network with generic anti-sorted input

Comparators: character mismatches
Each value traces a strand in sticky braid (element of the Hecke monoid)

Comparing random strings

a, b : uniformly random permutation strings of length n, alphabet size n LCS grid: n random matches, one per grid row/column
Transposition network: $n^{2}-n$ random comparisons (mismatches)
Equivalent to LIS of a uniformly random permutation
$\mathbb{E} \operatorname{lcs}(a, b) \sim 2 n^{1 / 2} \quad n \rightarrow \infty$
[Vershik, Kerov: 1977]

Comparing random strings

a, b : uniform Bernoulli sequences of length n, alphabet size $\sigma=O(1)$ LCS grid: $\approx n^{2} / \sigma$ random matches, one per grid row/column
Transposition network: $\approx n^{2}(1-1 / \sigma)$ random comparisons (mismatches)
$\mathbb{E} \operatorname{lcs}(a, b) \sim \gamma_{\sigma} n \quad n \rightarrow \infty$
$0 \leq \gamma_{\sigma} n-\mathbb{E} / \operatorname{cs}(a, b) \leq O\left((n \log n)^{1 / 2}\right)$
γ_{σ} : Chvátal-Sankoff constants
From now on, $\sigma=2, \gamma=\gamma_{2}$
The Chvátal-Sankoff problem: find γ; expected normalised LCS length of a pair of equally long uniformly random binary strings

More generally, find γ_{σ} for all $\sigma \geq 2$

Comparing random strings

Precise value of γ unknown

	$\gamma>$	$\gamma<$	
[Chvátal, Sankoff: 1975]	0.697844	0.866595	≈ 0.8082
[Deken, 1979]	0.7615	0.8575	
[Steele, 1986] (Arratia)			$\stackrel{?}{=} 2(\sqrt{2}-1) \approx 0.8284$
[Paterson, Dančík: 1994]	0.77391	0.83763	≈ 0.812
[Baeza-Yates et al.: 1999]			≈ 0.8118
[Boutet de Monvel: 1999]			≈ 0.812282
[Bundshuh: 2001]			≈ 0.812653
[Lueker: 2009]	0.788071	0.826280	(refutes Arratia)
[Bukh, Cox: 2022]			≈ 0.8122
this work	exact equations		algebraic ≈ 0.8085

Comparing random strings

Stochastic processes in discrete time:

- discrete-time TASEP particle process (the "traffic jam" model)
- Young diagram corner growth model
- six-vertex model of statistical mechanics

Scaling limits well-known to exist, expressed by PDEs
[Rajewsky+: 1997; Martin, Schmidt: 2011; Borodin+: 2016]
Approaching the Chvátal-Sankoff problem:

- represent random LCS as a stochastic particle model
- local fit with an easier model by polynomial equations
- invariant distribution for both models
- global behaviour from local invariance via scaling limit PDE

Comparing random strings

Model CS: random LCS transposition network as a stochastic process

Evolution variants:

- time vertical, space horizontal, or vice versa (sequential update)
- time diagonal, space antidiagonal (sublattice-parallel update)

Comparing random strings

Scalar conservation law
$\frac{\partial}{\partial t} y+\frac{\partial}{\partial x} f(y)=0 \quad$ fluid density $y(x, t) \quad$ flux $f(y)$, concave
Step initial condition at $t=0: y(x, 0)= \begin{cases}1 & x<0 \\ 0 & x>0\end{cases}$

Comparing random strings

Scalar conservation law (contd.)
Solution for $t>0$:
$y(x, t)= \begin{cases}\left(f^{\prime}\right)^{-1}(x / t) & f^{\prime}(1) t \leq x \leq f^{\prime}(0) t \text { (rarefaction wave) } \\ y(x, 0) & \text { otherwise (frozen area) }\end{cases}$
Assume $0 \leq y \leq 1, f(0)=f(1)=0$: natural for fluid density/flux
Peak flux $\tilde{f}=f(\tilde{y})$ at density $\tilde{y}=\left(f^{\prime}\right)^{-1}(0)=y(0,1)$
Assume f symmetric: $f(y)=f(1-y) \quad \tilde{y}=\frac{1}{2}$
$\tilde{f}=f\left(\frac{1}{2}\right)=$ mass transported across origin $x=0$ by $t=1$
$\gamma=1-\tilde{f}$ in model CS

Comparing random strings

Scaling limit asymptotics for a particle-hole process
Time diagonal, space antidiagonal
Denote $\bar{z}=1-z$, conditional probabilities $A \mid B$ (condition in red)
Consider a small neighbourhood of $x=0, t=1$

- particle-hole symmetry: $u=\bullet=\phi ; \bar{u}=-0=\phi$
- provides peak flux: $\tilde{f}=f$

To obtain \tilde{f} for model CS, must study carefully dependencies between
- site values $-\mathrm{o},-\bullet$, ϕ, ϕ
- cell types $\backslash, /$, as determined by characters of a, b

Comparing random strings

Model $B(1 / 2)$ (the Bernoulli model)

Arratia-Steele conjecture: pretend types of all cells mutually independent
[Steele: 1986; Seppäläinen: 1997; Majumdar, Nechaev: 2005; ...]
Motivation:

- cell types independent in triples (in particular, \square-shapes)
- ... but not in quadruples (- shape completes square uniquely)
- perhaps $\#$ shape dependence doesn't matter?

Swap rate $p=\frac{1}{6}=ノ=\frac{1}{2}$
Time-invariant distribution: all sites independent (more on next slide)
$\gamma^{B(1 / 2)}=2(\sqrt{2}-1) \approx 0.8284 \neq \gamma$
Conjecture disproved by upper bound
[Lueker: 2009]

Comparing random strings

Model B (the generalised Bernoulli model)

Separate $p=ノ=\frac{1}{2}$ into conditional probabilities

- swap rate $p_{2}=\frac{1}{6}$ now free to be $\neq \frac{1}{2}$

Swap rate balanced out by pseudo-rates to preserve $/=\frac{1}{2}$
Time-invariant distribution: alternating Bernoulli (AB) sequence
- doubly-infinite; space-invariant under shift $i \mapsto i+1$ and reversal $i \mapsto-i-1$ with simultaneous exchange of \circ and \bullet
- all sites mutually independent

AB sequence parameter $u=\bullet$ determined by swap rate p_{2}

Comparing random strings

Model B (contd.)

Fit (pseudo-)rates to model CS locally in a neighbourhood of $x=0, t=1$ via equations in (pseudo-)rates and the parameter of $A B$ sequence

- time-invariance equations: 1 time step; link u with p_{2} for model B
- string matching equations: 3 time steps; link models $B, C S$

Solve by Mathematica's Solve, option Quartics -> True
$u=\sqrt{\frac{7}{3}}-\sqrt{\frac{23-5 \sqrt{21}}{6}}-1 \approx 0.407025$
$p_{2}=-\frac{2}{3}+\frac{34}{3} u-19 u^{2}-4 u^{3} \approx 0.528838$
$\gamma^{B}=1-f^{B}=1-\bar{u} u p_{2} \approx 0.814050 \neq \gamma$
Fit not perfect: $A B$ property not expressed fully by equations

Comparing random strings

Model M (the Markov model)

 Pseudo-rates $p_{a b c d}=$

Time-invariant distribution: alternating second-order Markov (AM2) sequence

- doubly-infinite; space-invariant under shift $i \mapsto i+1$ and reversal $i \mapsto-i-1$ with simultaneous exchange of \circ and \bullet
- conditioned on adjacent site pair $\left(\xi_{i}, \xi_{i+1}\right)$, infinite prefix $\left(\ldots, \xi_{i-2}, \xi_{i-1}\right)$ independent of infinite suffix $\left(\xi_{i+2}, \xi_{i+3}, \ldots\right)$

AM2 sequence parameters $u=\bullet, v_{a}={ }_{a}^{\bullet}, w_{a b}={ }_{-a}{ }^{\bullet \bullet}$ determined by swap partial rates $p_{5}, p_{4}=p_{13}, p_{12}$

Comparing random strings

Model M (contd.)

Fit (pseudo-)rates to model CS locally in a neighbourhood of $x=0, t=1$ via equations in (pseudo-)rates and the parameters of AM2 sequence

- time-invariance equations: 1 time step; link $u, v_{a}, w_{a b}$ with p_{5}, $p_{4}=p_{13}, p_{12}$ for model M
- string matching equations: 3 time steps; link models $M, C S$
- total probability: $\sum_{a, b, c, d \in\{0, \bullet\}}{ }_{-a}{ }^{\left[c^{d}\right.} \equiv=ノ=\frac{1}{2}$

Perfect fit: AM2 property expressed by polynomial equations, $\gamma=\gamma^{M}$
Equation coefficients 1 and 2 ; hence, γ is algebraic
Closed-form expression unlikely due to complexity of equations

Comparing random strings

Experiment options

"Naive" (very slow convergence)

- generate long random strings; compute LCS; repeat

Simulating model CS (done; slow convergence)

- initialise with AB sequence for $t=0$
- run model CS to stationary state (max 20 time steps)
- bit-parallel LCS [Crochemore+: 2003] and various optimisations

Solving iteratively for model M parameters (assumes model's correctness)
Current estimate $\gamma \approx 0.8085$
Needs extra confirmation/reconciling with previous work

Conclusions

The Chvátal-Sankoff problem: expected normalised LCS length γ of a pair of equally long uniformly random binary strings
Expressed as hydrodynamic limit of stochastic particle process (model CS)
Linked with another stochastic process (model M): local fitting in a small neighbourhood of main diagonal

Flux for model M expressed by a (large) system of algebraic equations

- implies that γ is algebraic
- closed-form solution unlikely due to equations' complexity

Essentially resolves the Chvátal-Sankoff problem (with a somewhat negative flavour)

Numerical solution: several options, work in progress

Conclusions

Further work:

- distribution properties beyond expectation γ (e.g. Tracey-Widom?)
- strings of unequal length, limit shape (similar but more cumbersome)
- skewed character distribution (challenging, no \rrbracket independence)
- Levenshtein distance (special case of ternary strings)
- ternary or larger alphabet (challenging, no \boxminus uniqueness)
- more than two strings (looks hopeless)

