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Abstract. We consider the construction of the fundamental function and
Abelian differentials of the third kind on a plane algebraic curve over the field
of complex numbers that has no singular points. The algorithm for construct-
ing differentials of the third kind is described in Weierstrass’s Lectures. The
article discusses its implementation in the Sage computer algebra system. The
specificity of this algorithm, as well as the very concept of the differential of
the third kind, implies the use of not only rational numbers, but also alge-
braic ones, even when the equation of the curve has integer coefficients. Sage
has a built-in algebraic number field tool that allows implementing Weier-
strass’s algorithm almost verbatim. The simplest example of an elliptic curve
shows that it requires too many resources, going far beyond the capabilities
of an office computer. Then the symmetrization of the method is proposed
and implemented, which solves the problem and allows significant economy
of resources. The algorithm for constructing a differential of the third kind is
used to find the value of the fundamental function according to the duality
principle. Examples explored in the Sage system are provided.

Of all the known approaches to Abelian integrals, Weierstrass’s approach
was the most constructive. In Ref. [1], we tried to show that the normal form of
representation of Abelian integrals proposed in the lectures gives solutions to a
number of classical problems and its implementation in computer algebra systems
would be very useful. The key problem on this way, both in the 19th century and
now, is the construction of the fundamental function (Hauptfuktion) or, which
is also due to the duality principle, the differential of the third kind (Art), the
construction algorithm of which is described in the last chapter of Part 1 of the
Weierstrass Lectures [2], published in 1902 by Hettner and Knoblauch. There are
no examples of using the algorithm in the text.

A characteristic feature of Weierstrass’ approach is the use of a large number
of irrational numbers, the algorithm for determining which is either described in
the text, or more or less obvious. The Sage system has a built-in implementation
QQbar of the field of algebraic numbers, so in theory the algorithms from the
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Lectures can be implemented as written. However, in practice, symbolic expres-
sions containing a ten of numerical coefficients from the field of algebraic numbers
QQbar are very difficult to manipulate. We decided to consider this direct imple-
mentation of the algorithms and these expressions themselves and evaluate the
difficulties that arise.

Let polynomial f define an algebraic curve C of the order r on the projective
plane xy over the field C. Let for simplicity this curve have no singular points.

Definition. A differential of the form udx, u ∈ C(x, y) having no singular
points is called a differential of the first kind. A differential of the form udx,
u ∈ C(x, y) is called a differential of the third kind, if it has two singular points,
namely, poles of the first order (x1, y1) and (x2, y2) with residues 1 and −1.

Problem 1. Given a polynomial f ∈ Q[x, y], find a non-constant rational
function u ∈ C(x, y) such that udx is a differential of the first kind.

The absence of finite singular points makes one seek the solution in the form

E(x, y)dx

fy(x, y)
, E ∈ C[x, y],

and the absence of singular points at infinity indicates the fact that the order of
the polynomial E cannot exceed r− 3. Since no limitations should be imposed on
the coefficients of this polynomial, the set of differentials of the first kind has the
dimension

p =
(r − 1)(r − 2)

2
,

which is called a genus of the curve. For the basis of this space one can take
differentials with the coefficients form the field Q, rather than from its algebraic
closure. Therefore, when constructing differentials of the first kind it is possible
and necessary to work over the field Q.

Algorithms for calculating a basis for the space of differentials of the first kind
for planar curves, including those having singular points, have been proposed both
in classical books and in present-day papers [3]. At present they are implemented
in the systems Maple (AlgCurves, CASA) and Sage.

Problem 2. Given a indecomposable polynomial f ∈ Q[x, y], defining a pro-
jective curve C, and two points (x1, y1) and (x2, y2) on this curve, and x1, x2, y1, y2 ∈
Q. It is required to construct a non-constant rational function u ∈ C(x, y) such
that udx is a differential of the third kind with the poles (x1, y1) and (x2, y2).

The addition to the differential of a linear combination of differentials of the
first kind does not give rise to new singularities of change of residues, therefore,
the solution of Problem 2 is defined to a linear combination of p differentials of
the first kind.

The absence of finite singular points with x 6= xi makes one seek the solution
in the form

E(x, y)dx

(x− x1)(x2 − x)fy(x, y)
, E ∈ C[x, y],
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and the absence of points at infinity indicates the fact that the order of the poly-
nomial E cannot exceed r − 1. Equation

f(xi, y) = 0

beside the root y = yi has r − 1 more roots; let us denote them as y′i, . . . , y
(r−1)
i .

If there are no multiple roots among them, then the equations

E(xi, y
(j)
i ) = 0, i = 1, 2, j = 1, . . . , r − 1

ensure the absence of singularities at point, different from (x1, y1) and (x2, y2).
The conditions for residues at these points give two more equations:

E(x1, y1) = (x2 − x1)fy(x1, y1), E(x2, y2) = (x2 − x1)fy(x2, y2).

Thus, the solution to Problem 2 reduces to the solution of a system of linear
equations with coefficients from QQbar, and the main difference of Problem 2
from Problem 1 is the necessity to extend the number field.

We wrote a directi realization of the described method in Sage and applied
it to an elliptic curve

x3 − y3 + 2xy + x− 2y + 1 = 0.

The solution of Problem 2 led to six linear equations with six unknowns c0, . . . , c5.
To solve systes of equations, Sage uses a standard function solve, which does
not support the operation with algebraic numbers. Therefore, we proceeded to
matrices over the field of algebraic numbers and tried to solve the system of linear
equations by means of function solve_right. However, this function did not cope
with this system in a reasonable amount of time.

Fortunately, the system of equations consists of two subsystems of the form

E(xi, y
(j)
i ; c0, . . . ) = bi,j , j = 1, 2, . . . r, (1)

where y
(j)
i is te set of roots of equation f(xi, y) = 0 with respect to y. It can be

symmetrized and its solution can be reduced to inverting matrices with rational
coefficient. In the example considered, a visually graspable expression is obtained
( -0.9888519187910046?* x * y - y ^2 +
0.1254856073486862?* x - 0.4533976515164038?* y -
2.205569430400590?) * dx /((3* y ^2 - 2* x + 2) *( x - 1) * x)

Thus, such symmetrization is quite enough for efficient implementation of the
method for constructing a differential of the third kind, proposed in Weierstrass’s
Lectures.

The next step in implementing algorithms, proposed in Weierstrass’s Lec-
tures, is the construction of the fundamental function. For this purpose, it is suffi-
cient to construct a differential of the third kind with a movable pole. To execute
symmetrization in this case, too, we intend to use a perfect tool — the package
Symmetric Functions for Sage, which allows expressing a symmetric function from
a ring K[x1, . . . , xn] as a linear combination of elementary symmetric functions.
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