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Abstract. The main goal of this work is the study of tropical recurrent se-
quences determined by various relations. For a set of tropical recurrent se-
quences described by tropical relations, D. Grigoriev put forward a hypothe-
sis of stabilization of the maximum dimensions of the components of tropical
prevarieties. This hypothesis has not been proven yet. As part of this work,
for various recurrent sequences, the appropriate tropical prevarieties were ex-
amined using the gfan package in order to check Grigoriev’s hypotises. The
validity of such a hypothesis would make it possible to calculate the corre-
sponding dimensions for a recurrent sequence for an arbitrary length.

Introduction
As part of this work, for various tropical recurrent relations, the corresponding
tropical prevarieties were studied using the Gfan package in order to check the
Grigoriev hypothesis about the stabilization of the maximum dimensions of the
components, i.e the existence of a tropical analogue of the Hilbert polynomial.
This hypothesis has not been proven yet. As part of this work, for various recur-
rent sequences, the appropriate tropical prevarieties were examined using the gfan
package in order to check Grigoriev’s hypotises.

In this work, the dimensions of the space of sequences are calculated in the
cases of various recurrent relations. According to the calculated dimensions, the
increase rate of the space of sequences relative to the number of elements in finite
tropical sequences was revealed. Based on this regularity, hypotheses were made
about the value of tropical entropy for various tropical recurrence relations. The
calculations were made in the gfan package developed in 2005 by A. Jensen.

Gfan is a software package for calculating Gröbner fans and tropical varieties,
developed in 2005 by A. Jensen, based on the algorithms in his dissertation [2]. The
gfan package allows computing Gröbner bases, Gröbner fans, tropical prevarieties,
varieties by given polynomials, and other objects of tropical geometry and the
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theory of Gröbner bases. It is currently the most powerful software tool for such
calculations. Gfan is distributed as a standard Linux package and is part of the
Debian distribution.

1. Basic objects of tropical math
Basic object of study is the tropical semiring (R∪{−∞},⊕,⊗). If T is an ordered
semi-group then T is a tropical semi-ring with inherited operations ⊕ := max, ⊗ :=
+. As a set this is just the real numbers R, together with an extra element −∞.
In this semiring, the basic arithmetic operations of addition and multiplication of
real numbers are redefined as follows:

x⊕ y := max(x, y) and x⊗ y := x+ y.

Many of the familiar axioms of arithmetic remain valid in tropical mathe-
matics. For instance, both addition and multiplication are commutative. These
two arithmetic operations are also associative, and the times operator takes ⊗
precedence when plus ⊕ and times ⊗ occur in the same expression. The distribu-
tive law holds for tropical addition and multiplication. [4]

Both arithmetic operations have an identity element. Minus infinity is the
identity element for addition and zero is the identity element for multiplication.
An important difference between the tropical semiring and classical math is that
tropical addition is idempotent x⊕ x = x.

Let x1, . . . , xn be variables which represent elements in the tropical semiring
(R ∪ {−∞},⊕,⊗). By commutativity, we can sort the product and write tropical
monomial in the usual notation, with the variables raised to exponents:

q(x1, . . . , xn) = a⊗ xi1
1 ⊗ · · · ⊗ xin

n .

A monomial represents a function from Rn to R. When evaluating this func-
tion in classical arithmetic, what we get is a linear function:

q(x1, . . . , xn) = a+ i1 · x1 + · · ·+ in · xn.

A tropical polynomial is a finite linear combination of tropical monomials:

p(x1, . . . , xn) =
⊗
j

(
aj ⊗ x

ij1
1 ⊗ · · · ⊗ x

ijn
n

)
.

Here the coefficients aj are real numbers and the exponents ij1 , . . . , ijn are
integers. Every tropical polynomial represents a function Rn → R. When evaluat-
ing this function in classical arithmetic, what we get is the maximum of a finite
collection of linear functions, namely

p(x1, . . . , xn) = max
j

(aj + ij1 · x1 + · · ·+ ijn · xn) .

Definition 1. x = (x1, . . . , xn) is a tropical zero of p if maximum maxj qj is
attained for at least two different values of j.
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Let some vector w ∈ Rn be given. We will use it as weight vector of some
monomial ordering. And in this case, we allow negative values of the weigths. The
initial form inw(f) of a polynomial f is the highest monomials of this polynomial
when the degrees of monomials are weighted by the vector w.For example, if g =
x + 2y + z + 1, then in(0,0,1)(g) = z and in(0,0,−1)(g) = x + 2y + 1.The highest
monomials at some weight vectors may have more than one. This is part of the
description of a tropical hypersurface.

Definition 2. Tropical hypersurface of the polynomial f is the set

T (f) = {w ∈ Rb : inw(f) is not monomial}.

The tropical hypersurface is described in the same order space as the weight
space. It is easy to see that if the weight vectors differ by a constant factor, then
the weight orders are the same. That is, the membership of one point in the space
of a tropical hypersurface entails the membership of the ray on which this point
lies.

The connection between the concept of a tropical hypersurface and tropical
mathematics lies in the process of tropicalization. Tropicalization is the transition
from objects of classical mathematics to objects of tropical mathematics, which
is carried out as follows: classical addition, multiplication and exponentiation are
replaced by their tropical counterparts, the coefficients at monomials are assumed
to be equal to zero.

Definition 3. Tropical prevariety of a system of polynomials f1, . . . , fn is the
finite intersection of tropical hypersurfaces

T (f1) ∩ · · · ∩ T (fn).

2. Tropical recurrent sequences

A classical linear recurrent sequence {zj}j∈Z satisfies conditions
∑

0≤i≤n aizi+k =
0, k ∈ Z, a0 ̸= 0, an ̸= 0. A remarkable property of classical linear recurrent se-
quences is as follows: since the last coefficient an is not equal to zero, then if you
calculate all z up to zi, you can uniquely calculate zi+1 by substituting the corre-
sponding k into the formula. This property is satisfied, since in classical arithmetic
there are elements inverse in addition.

Definition 4. y = yi ∈ (R ∪ {−∞})j∈Z is a tropical recurrent sequence if it
satisfies conditions

max
0≤i≤n

(ai + yk+i), k ∈ Z, a0 > −∞, an > −∞. (1)

The fulfillment of this condition means reaching the maximum in two or more
tropical terms ai + yk+i.

The main difference between tropical recurrent sequences and classical ones
is that each subsequent term, knowing the previous ones, is not always uniquely
determined. Tropical recurrent sequences can be either periodic or non-periodic.
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A sequence y is called periodic if ∃d > 0 such that yi − di∈Z satisfies the tropical
recurrence conditions 1.

Periodic recurrent sequences are in a sense trivial, since they correspond to
classical recurrent sequences. The presence of non-periodic sequences is a tropical
effect, and it is this presence that is the reason for the increase in the number of
recurrent sequences with their length. To define tropical entropy, we introduce the
concept of finite tropical recurrent sequences.

y = (y0, . . . , ys) ∈ (R ∪ {−∞})s+1 is a finite tropical recurrent sequence if it
satisfies conditions

max
0≤i≤n

(ai + yk+i), k ∈ {0, 1, . . . , s− n}, a0 > −∞, an > −∞.

Definition 5. Denote by Ds := Ds(a) ∈ (R ∪ {−∞})s+1 the set of sequences
satisfying vector a, and denote by ds := dimDs. Tropical entropy is the limit
H(a) := lim

s→∞
ds

s .

In the paper [1] D. Grigoriev proved the existence of entropy, as well as some
properties.

3. Computing of tropical prevarieties corresponding to tropical
recurrent sequences

Since the tropical entropy is a limit, in this paper reasonable hypotheses are given,
what it can be equal to. To calculate the hypothetical tropical entropy, the vector
a is associated with a system of n − s + 1 linear tropical equations with s + 1
unknowns, then the tropical prevariety of the system of equations are calculated.
The gfan package is used to compute tropical prevarieties. The GFAN package
computes tropical prevarieties only for polynomials with zero coefficients. For non-
zero coefficients, a parametrization is introduced, which is discussed in detail in
the GFAN manual [3] when calculating tropical curves.

From the computed tropical prevariety, one can find ds. With a series of
calculations with different s, you can find a pattern of growth in dimension and
draw a conclusion about the hypothetical tropical entropy.

Using linear transformations, the vector a = (a0, . . . , an) can be associated
with the vector b = (0, b1, . . . , bn−1, 0). It is technically easier to consider cases in
which a0 = 0 and an = 0. The calculations were done for all such vectors of length
n=3, presented in Table 1.

Conclusion
Computations of tropical prevarieties are performed to study the asymptotics of
ds and the conduct of the tropical entropy for various cases of a vector a of length
n = 3. All hypothetical values of tropical entropy satisfy the properties proved in
[1]. As a continuation of this work, it is proposed to do the following:
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1. Computing of tropical prevarieties corresponding to tropical recurrent se-
quences of vectors of greater length.

2. Computing of tropical prevarieties for systems of non-recurrent equations.
3. Development of an interface for tropical computing.

a\s d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 H(a)
(0,0,0,0) 4 4 4 5 6 6 6 7 8 8 8 9 10 10 1/2
(0,1,-1,0) 4 5 5 6 6 7 7 8 8 9 9 10 10 11 1/2
(0,-1,-1,0) 3 4 5 5 5 5 5 6 7 7 7 7 7 8 1/3
(0,1,2,0) 4 4 5 5 5 6 6 6 7 7 7 8 8 8 1/3

(0,-1,-2,0) 4 5 5 5 6 6 6 7 7 7 8 8 8 9 1/3
(0,-1,-3,0) 3 4 4 4 5 5 5 6 6 6 7 7 7 8 1/3
(0,-2,-3,0) 3 4 5 5 5 5 5 6 7 7 7 7 7 8 1/3

(0,-1,-∞, 0) 3 4 4 4 5 5 5 6 6 6 7 7 7 8 1/3
(0,0,-∞, 0) 3 3 4 4 4 4 5 5 5 6 6 6 6 7 2/7
(0,1,3,0) 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1/4
(0,-1,2,0) 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1/4
(0,1,-2,0) 3 4 4 4 4 5 5 5 5 6 6 6 6 7 1/4
(0,-1,0,0) 4 4 5 5 5 5 6 6 6 6 7 7 7 7 1/4
(0,1,0,0) 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1/4

(0,1,-∞, 0) 3 4 4 4 4 5 5 5 5 6 6 6 6 7 1/4
(0,1,1,0) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0
(0,2,3,0) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0

(0,-∞,−∞, 0) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0
Table 1. Hypothetical tropical entropy for n = 3
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