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Abstract. The paper investigates the connection between the global integra-
bility of an autonomous two-dimensional polynomial ODE system and its
local integrability near stationary points using the example of the polynomial
case of a Lenar-type equation. We presented the equation in the form of a
dynamical system and parametrized it. The conditions for local integrability
near stationary points are written out and the values of the parameters under
which these conditions are satis�ed are found. It is established that for certain
values of the parameters obtained in this way, the system actually turns out
to be integrable. Thus, we can speak of a heuristic approach that allows one
to determine the cases of ODE integrability.

Introduction

We use an approach based on local analysis. It uses the resonant normal form
computed near stationary points [1]. In [2], a method was proposed for �nding
parameter values for which the dynamical system is locally integrable at all sta-
tionary points simultaneously. The main idea is that in the domain of integrability
in the phase space, a necessary condition is local integrability at every point of
this domain. But at regular points, local integrability already takes place, so lo-
cal integrability is also necessary at singular points, and at all such points of the
domain under consideration.

Note that for the global integrability of an autonomous planar system, it
su�ces to have one global integral of motion. From its expression, one can obtain a
solution of the system in quadratures; therefore, integrability implies the solvability
of the system.
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Problem

We will check our method on the example of the Liénard-like equation

ẍ = f(x)ẋ+ g(x), (1)

Here we assume that f(x) and g(x) are polynomials. Usually, the Linard equation
assumes that f(x) is an even function and g(x) is an odd function [3] . We do
not assume a certain parity for them, so we are talking about the Linard-type
equation.

Equation (1) is equivalent to the dynamical system

ẋ = y,
ẏ = (a0 + a1x) y + b1x+ b2x

2 + b3x
3,

(2)

here x and y are functions in time and parameters a0, a1, b1, b2, b3 are real.
The problem is to construct the �rst integrals of system (2).

Method

Note that for the global integrability of an autonomous planar system, it su�ces to
have one global integral of motion. From its expression, one can obtain a solution
of the system in quadratures; therefore, integrability implies the solvability of the
system. The main task of the method under discussion is to �nd conditions on
the parameters of the system under which the system is locally integrable near its
stationary points. Local integrability means the presence of a su�cient number
(one for an autonomous �at system) of local integrals at each point of the region
under study, including the corresponding stationary points. Local integrals may be
di�erent for each point of this region of the phase space, but for the existence of a
global integral, local integrals must exist for the desired values of the parameters at
all �xed points. This is a necessary condition. In papers [1] the algebraic condition
of local integrability is written out. This is the so-called A condition. This condition
is satis�ed at all regular points, but it is nontrivial at stationary points.

First, we look for sets of parameters under which the conditionA is satis�ed at
the �xed point of the system at the origin (2). We solve the corresponding systems
of algebraic equations with respect to the parameters a0, a1, b1, b2, b3 and check the
integrability at other stationary points for each found set of parameters. "Good"
sets of parameters are good candidates for the existence of a single function for
all points - the �rst integral. These integrals are sought by the method described
below.

Conditions of the Integrability

The condition A is some in�nite sequence of polynomial equations with respect to
the coe�cients of the system. Each of the stationary points has its own system of
equations. But the normal form has a non-trivial form only in the resonant case.
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This means that we can only use our method if the eigenvalues of the linear part
of the system (2) refer as integers. We restrict our study to this case for now. A
possible condition for these eigenvalues to be related as 1 : M and have opposite
signs (the resonance case) is the relation

a0 −
√
a20 + 4b1 = −M

(
a0 +

√
a20 + 4b1

)
.

We choose the �resonance� restriction on parameters in the form

b1 =
a20M

(M − 1)2
. (3)

From the A condition, we constructed three equations for the system param-
eters a0, a1, b2, b3 for the (1 : 2), (1 : 3) and (1 : 4) resonances, i.e. for M = 2, 3, 4.
Here is the �rst of three equations for M = 2 as an example

a0
3
(
2a1

3 − 29a1b3
)
+ a0

2b2
(
26a1

2 + 43b3
)
+ 13a0a1b2

2 − 11b2
3 = 0.

Results

For the case with resonance M = 2 the solutions of the corresponding algebraic
system calculated by the MATHEMATICA-11 system are

1) {a0 → 0, b2 → 0},
2) {b2 → −a0a1, b3 → 0},
3) {b2 → −4a0a1/7, b3 → −6/49 a12},
4) {b2 → −a0a1/3, b3 → −a12/9},
5) {b2 → 3a0a1, b3 → a1

2},
6) {a1 → 0, b2 → 0, b3 → 0}.

(4)

Here b1 → 2a20 for M = 2. At these sets of parameters we checked the integrability
condition at other stationary points of (2).

The autonomous system of the second order(2) can be rewrite as the �rst
order non-autunomous equation

dy(x)/dx = [(a0 + a1x) y(x) + b1x+ b2x
2 + b3x

3]/y(x)
or

dx(y)/dy = x(y)/[(a0 + a1x(y)) y + b1x(y) + b2x(y)
2 + b3x(y)

3].
(5)

After this rewrite, we tried to solve such equations with each of the parameter sets
(4) using the MATHEMATIC-11 solver. We have found solutions for sets 2), 4), 5)
and 6) in the implicit form of F (y(x), x, C) = 0. We then expressed the constant
C as a function in x, y(x) and replaced these variables with x(t) and y(t). Thus,
we obtain integrals of motion. The resulting integrals can be veri�ed by direct
calculation of the time derivative along the system.
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The integrable cases in (4) correspond to the equations

2) ẍ = (a0 + a1x) ẋ+ 2a0
2x− a0a1x

2,
4) ẍ = (a0 + a1x) ẋ+ 2a0

2x− 1
3a0a1x

2 − 1
9a1

2x3,
5) ẍ = (a0 + a1x) ẋ+ 2a0

2x+ 3a0a1x
2 + a1

2x3.
(6)

We returned here from the systems of equations to the equations of the second
order. For equation 2) the �rst integral is

(a1x(t)− 2a0) sinh
(
1
2R(x(t), y(t))

)
+ a0R(x(t), y(t)) cosh

(
1
2R(x(t), y(t))

)
(a1x(t)− 2a0) cosh

(
1
2R(x(t), y(t))

)
+ a0R(x(t), y(t)) sinh

(
1
2R(x(t), y(t))

) ,
where

R(x(t), y(t)) =

√
a1(x(t)(a1x(t)− 2a0)− 2y(t))

a02
.

We have done the above steps for M = 2, 3 resonances with the same results. The
coe�cient b1 for x in (6) is �xed everywhere, since b1 = 2a20 for M = 2, but for
other M it will be di�erent.

Note also that case 4) in (6) (6) is exactly a special case of equation 4 from
section 2.2.3-2 of [4] with parameters a0 → b, a1 → 3a, c→ 2b2. But the fact that
cases 2) and 5) are integrable is a new result, at least for this book.
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