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Abstract. The procedure of deriving homological equations of arbitrary order,
which solutions are used in iterative procedure of normalization of a Hamil-
tonian in a neighborhood of an equilibrium position, is considered. A formula
for a homological equation of arbitrary order used in the method of normal-
ization by means of the Lie series is proposed. The normalization procedure is
applied to Hamiltonian of the Hill problem written in scaled regular variables.
The resulting normal form of the Hill problem can be used to find domains
of analyticity of the normalizing transformation.

Introduction
Normal form (NF) of a system of ordinary differential equations (ODE) computed
near an invariant manifold (stationary point, periodic solution or invariant torus)
is rather powerful technique for investigation of local dynamics of the phase flow
in the vicinity of this invariant structure. Even though the NF is a formal object
it can be used for searching first integrals of the system, families of periodic solu-
tions, for studying integrability, stability and bifurcations. The special properties
of Hamilton systems require specific algorithms for computation their NF. The
goal of the presented work is to provide a procedure for constructing so called
homological equation of any order, which is used in the procedure of so called
invariant Hamiltonian normalization .

1. Hamiltonian normal form
We consider an analytic Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
(1)

with n degrees of freedom near its stationary point x = y = 0.
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The Hamiltonian function H(x,y) is expanded into convergent power series
H(x,y) =

∑
Hpqx

pyq with constant coefficients Hpq, p,q ≥ 0, |p|+ |q| ≥ 2.
Canonical transformations of coordinates x,y

x = f(u,v), y = g(u,v), (2)

preserve the Hamiltonian character of the initial system (1).
Denoting by z = (x,y) ∈ R2n the phase vector one can write the linear part

of the system (1) in the form

ż = Bz, B =
1

2
J HessH|z=0 , J =

(
0n En

−En 0n

)
,

where J is symplectic unit matrix, En is identity matrix and HessH is Hessian of
function H. Let λ1, . . . , λ2n be eigenvalues of the matrix B, which can be reordered
in such a way that λj+n = −λj , j = 1, . . . , n. Denote by λ = (λ1, . . . , λn)

T.
There exists [1, § 12, Theorem 12] a canonical formal transformation (2) in

the form of power series, which reduces the initial system (1) into its normal form
for the case of semi-simple eigenvalues

u̇ =
∂h

∂v
, v̇ = −∂h

∂u
,

defined by the normalized Hamiltonian

h(u,v) =

n∑
j=1

λjujvj +
∑

hpqu
pvq,

containing only resonant terms hpqu
pvq with

⟨p− q,λ⟩ = 0.

Here 0 ≤ p,q ∈ Zn, |p|+ |q| ≥ 2 and hpq are constant coefficients.

2. Invariant normalization method and its application
Here we describe normalization procedure.

• The real Hamiltonian H(x,y) is written in the complex form H(z, z̄).
• The method of invariant normalization is applied to H(z, z̄) up to the definite

order and we get it NF h(Z, Z̄), which contains only resonant terms.
• The obtained complex NF h(Z, Z̄) can be transformed into the real NF
h(X,Y).
Here we consider a Hamiltonian system, which stationary point (SP) coincides

with the origin. Applying scaling x → εx, y → εy and t → ε2t one can write it
in the form of power series in ε: H(x,y) = H0 + F = H0 +

∑∞
j=1 ε

jHj(x,y),
where H0 is quadratic (unperturbed) form and Hj is a homogeneous form of order
j + 2. We are looking for the NF of the original Hamiltonian H as a power series
h(z, z̄) = h0+f = h0+

∑∞
j=1 ε

jhj(z, z̄), where h0 =
∑

j=1 λjzj z̄j and homogeneous
forms hj , j > 0, contain only resonant terms hpqz

pz̄q, |p| + |q| = j + 2, such
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that ⟨λ,p− q⟩. Transformation from the initial Hamiltonian H to its NF h is
provided by Lie generator G having form of a power series of ε: G =

∑
j=1 ε

jGj :
h = H+

∑∞
j=1

1
j!H ∗Gj . Lie generator G produces a near identical transformation,

so we have h0 = H0 and then

f = h0 ∗G+M, M = F +
∑
j=1

1

j!
H ∗Gj . (3)

Solution of (3) can be obtained be the method of invariant normalization,
proposed by V.F. Zhuravlev [2, 3]. This method can be considered as subsequent
averaging of functions Mj along the unperturbed solutions z(t,Z, Z̄) obtained from
the unperturbed system with Hamiltonian H0. It can be applied for the case of
nonzero eigenvalues.

According to it the homological equations can be rewritten in the form

dfj
dt

= 0, Mj = fj −
dGj

dt
, j = 1, 2, . . . (4)

Substituting the solutions z(t,Z, Z̄), z̄(t,Z, Z̄) to the unperturbed system into the
function Mj one gets function mj(t,Z, Z̄) = Mj(t,Z, Z̄) and getting the following
quadrature

t∫
0

mj(t,Z, Z̄)dt = tfj(Z, Z̄) +Gj(Z, Z̄) + g(t). (5)

Hence, on each step of the normalization procedure the next term of the NF
fj equals the coefficient at t, and the Lie generator term Gj equals the time-
independent term in (5).

It is possible to reduce approximately in 4 times the number of terms in
functions Mj , j = 2, 3, · · · . From the first equation of (3) for each j = 2, 3, . . . one
can get that h0 ∗Gj = fj −Mj . Let us introduce the following notations:

f+
j ≡ Fj + fj , f

−
j ≡ Fj − fj , H ∗Gk

j1···jk = H ∗Gk−1
j1···jk−1

∗Gjk .

Statement 1. For j > 2 function Mj is constructed in a such way:

• Term Fj is taking and sum 1
2

j−1∑
k=1

f+
k ∗Gj−k is adding to it.

• For each k not greater than [j/2] we compute the set µ2k+1(j) of all permu-
tations of any partition ν2k+1(j), i.e. the set µ2k+1(j) contains the tuple of
2k + 1 indices which sum is equal to j. For each such tuple (i1, . . . , i2k+1) of
indices one has to compute all the Poisson brackets of form f−

i1
∗G2k

i2···i2k+1
.

• The sum all the computed above Poisson brackets is multiplied by the coeffi-
cient α2k. These coefficients are well known Bernoulli numbers B2k divided by
factorial (2k)!: α2k = B2k

(2k)! . They can be computed with the help of generating
function g(ε) = ε

2 + ε
eε−1 − 1.
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• The final formula for Mj can be written as follows

Mj = Fj +
1

2

j−1∑
k=1

f+
k ∗Gj−k +

[j/2]∑
k=1

α2k

∑
(i1,...,i2k+1)∈µj

2k+1

f−
i1

∗G2k
i2···i2k+1

.

It is evident that high order normalization of the Hamiltonian H is only
possible with computer algebra systems. For example, such software [3, Ch. 7]
was developed in CAS Wolfram Mathematica. The author implemented the de-
scribed above algorithm in CAS Maplesoft Maple. Nevertheless, this invariant
normalization method can be implemented in other open source CAS. For exam-
ple, in SageMath, which essentially uses the SymPy symbolic computation package,
or Maxima.

The method of invariant normalization was applied to the well know planar
circular Hill problem, which Hamiltonian written in scaled regularized variables
has polynomial form. The NF h in the vicinity of the origin was computed up
to the 20-th order. This NF can be used for asymptotic integration of the Hill’s
problem equations of motion and for studying so called domains of analyticity [4].
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