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Let us consider the recognition problem whether there is a (0,1)-solution

to a system of linear equations over a field K, where char(K) 6= 2. From

a geometric point of view, we consider the recognition problem whether

a given affine subspace passes through a vertex of the multidimensional

unit cube.

Over the ring of integers, the problem is known as the multiple subset

sum problem. It is NP-complete.

Over a finite field of odd characteristic, the problem is NP-complete too.

The problem is closely related to pseudo-Boolean programming and various

generalizations of the knapsack problem.

We consider dimensionality reduction.



Let us consider the n-dimensional affine space with a fixed system of

Cartesian coordinates. The vertices of the unit n-dimensional cube are

points with coordinates equal to either zero or one. These vertices are

called (0,1)-points for short.

For n > m, a projection Kn → Km is so-called orthographic when the

projection forgets some coordinates.

It is important that the image of the unit cube is again a low-dimensional

unit cube.

The term was historically used to denote orthogonal projections from

three-dimensional space onto a plane over reals. For an affine space

over an arbitrary field K, the notion of orthogonality has no meaning.

Nevertheless, using a fixed coordinate system, it is possible to define a

special class of projections onto coordinate subspaces.

The current problem. Given an affine subspace L that is not incident

to any (0,1)-point. Does there exist a projection onto a low-dimensional

coordinate subspace that forgets some coordinates so that the image of

the subspace L is also not incident to any (0,1)-point?



Theorem. Given a positive integer s. There is an s-dimensional affine

subspace L ⊂ K2s+1 such that L does not pass through any (0,1)-point,

but under the orthographic projection onto any coordinate hyperplane,

the image of L passes through some (0,1)-point.

Example. Let us consider three points in a three-dimensional affine space

with coordinates (0,1,1/2), (1,2,0), and (−1,0,1), respectively. These

points belong to the same straight line L, which can be given by a system

of two equations x2 = x1 + 1 and x3 = (−x1 + 1)/2. But under the

orthographic projection onto any coordinate plane, the image of this set

of three points contains some (0,1)-point.



Theorem. Given a positive integer s. Over any infinite field K, there

is an s-dimensional affine subspace L ⊂ K2s such that L does not pass

through any (0,1)-point, but under the orthographic projection onto any

coordinate hyperplane, the image of L passes through some (0,1)-point.

Remark. In this theorem, the field K is infinite because the proof uses

the Schwartz–Zippel lemma.

In fact, the same theorem holds over the field having exactly three elements.

It is unknown whether it holds over larger finite fields.

Example. Let us consider the plane in the four-dimensional affine space

that is defined by the system of two equations x3 = x1 + x2 + 1 and

x4 = (−x1+x2+1)/2. A straightforward check shows that this plane does

not pass through any (0,1)-point. However, this plane passes through the

points (−1,0,0,1), (0,−1,0,0), (0,1,2,1), (0,0,1,1/2), each of which has

exactly one coordinate different from both zero and one. Therefore, under

the orthographic projection onto any coordinate hyperplane, the image

of this plane is incident to some (0,1)-point.



The rank of a matrix A is related to the dimensionality of the affine hull L

of all points corresponding to columns of the matrix. If L passes through

the origin, then rank(A) = dim(L), else rank(A) = dim(L) + 1.

Theorem. For every odd n, there is a n×n matrix A over the field K such

that every entry outside the leading diagonal belongs to the set {0,1},

every diagonal entry is neither 0 nor 1, no (0,1)-point belongs to the

affine hull of all points corresponding to columns of the matrix A, and

the equality rank(A) = ⌈n/2⌉ holds.

Proof. Let us consider the n× n matrix

A =
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1/2 0 1 0 1 · · · 0 1
0 −1 1 0 0 · · · 0 0
0 1 −1 0 0 · · · 0 0
0 0 0 −1 1 · · · 0 0
0 0 0 1 −1 · · · 0 0
... ... ... ... ... . . . ... ...
0 0 0 0 0 · · · −1 1
0 0 0 0 0 · · · 1 −1
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Theorem. Given a n × n matrix A over the field K, where every entry

outside the leading diagonal belongs to the set {0,1}, but every diagonal

entry is neither 0 nor 1. The rank of the matrix A is at least n/2.

Theorem. Given an even n and n × n matrix A over the field K, where

every entry outside the leading diagonal belongs to the set {0,1}, but

every diagonal entry is neither 0 nor 1. If no (0,1)-point belongs to the

affine hull of all points corresponding to columns of the matrix A, then

the rank of the matrix A is at least (n/2) + 1.

Theorem. For subspaces L ⊂ Kn, if dimL < ⌊n/2⌋ and L does not pass

through any (0,1)-point, then there is an orthographic projection onto

some coordinate hyperplane such that the image of L does not pass

through any (0,1)-point.



Theorem. If a straight line L intersects each of some three straight lines

containing pairs of adjacent (0,1)-points, but L does not pass through

any (0,1)-point, then L lies in the affine hull of a (0,1)-point and three

adjacent (0,1)-points.

Proof. One can assume that the straight line L intersects the first coordinate

axis at the point A with coordinates (a,0, . . . ,0), where all coordinates

except the first one are equal to zero and a 6∈ {0,1}. There is some k ≥ 2

such that the straight line L passes through a point W for which all

coordinates except the k-th one belong to the set {0,1}.

The straight line L consists of points (1 − t)A + tW , where t denotes a

parameter. If some two coordinates of the point W except the first one

equal to one, then these coordinates of any third point on the line L are

different from both zero and one. However, according to the condition,

there is a third point on the line L for which exactly one coordinate is

different from both zero and one. So, the point W can have at most

three coordinates different from zero including the first one. Therefore,

the straight line L lies in a coordinate subspace of dimensionality at most

three.



Let us consider five straight lines G(1), . . . , G(5) in the 5-dimensional

space such that each the line contains a pair of adjacent (0,1)-points.

If a plane L ⊂ K5 does not pass through any (0,1)-point, but L intersects

five straight lines G(1), . . . , G(5), then there is a straight line in L that

intersects three of these straight lines. So, every discussed obstacle to

dimensionality reduction has a hierarchical structure.

Theorem. If a plane L intersects each of some five straight lines G(1),

. . . , G(5) containing pairs of adjacent (0,1)-points, but L does not pass

through any (0,1)-point, then L lies in the affine hull of a (0,1)-point

and five adjacent (0,1)-points.



Let us consider the field F3 of residues modulo 3.

Theorem. Over the field F3, if there is no (0,1)-solution to a linear

equation

xn = a0 + a1x1 + · · ·+ an−1xn−1,

then a0 = 2 and other coefficients vanish: a1 = 0, . . . , an−1 = 0.

Proof. If the free term a0 equals 0 or 1, then a (0,1)-solution exists, e.g.,

x1 = 0, . . . , xn−1 = 0, and xn = a0.

Else a0 = 2.

The equation xn = 2 has no (0,1)-solution.

Otherwise, one can assume a0 = 2 and a1 ∈ {1,2}.

A (0,1)-solution exists, for example,

x1 = 1, x2 = 0, . . . , xn−1 = 0, and xn = a1 − 1.



Conclusion

Our results illustrate the high computational complexity of pseudo-Boolean

programming because the reduction of the ambient space by means of

projection meets an obstacle in the worst case. Moreover, we know the

exact bound for the dimension of the subspace for which the discussed

obstacle to dimensionality reduction exists. However, such an obstacle

arises only for special arrangements of the affine subspace. In the general

case and over an infinite field, there is an orthographic projection so that

the image of the subspace is a hyperplane in a space of lower dimension

and the image is not incident to any (0,1)-point.

Of course, there may be many such projections. For different projections,

the computational complexity of checking whether no (0,1)-point is incident

to the resulting subspace may be greater or less.
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