Modeling of bumping routes in the RSK algorithm

<u>Vasilii Duzhin</u>¹, Artem Kuzmin¹, Nikolay Vassiliev^{1,2}

¹Saint Petersburg Electrotechnical University "LETI"

²Saint Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Polynomial Computer Algebra April 21, 2023

V. Duzhin, A. Kuzmin, N. Vassiliev Bumping routes in the RSK algorithm

Robinson-Schensted-Knuth (RSK) correspondence

The Robinson-Schensted-Knuth correspondence is a bijection between a set of sequences of elements of a linearly ordered set and a set of pairs of Young tableaux of the same shape: insertion tableau P and recording tableau Q.

Robinson-Schensted-Knuth (RSK) correspondence

The Robinson-Schensted-Knuth correspondence is a bijection between a set of sequences of elements of a linearly ordered set and a set of pairs of Young tableaux of the same shape: insertion tableau P and recording tableau Q.

We consider the sequences consisting of random real numbers uniformly distributed in the interval [0, 1].

An example

 $0.570,\, 0.563,\, 0.771,\, 0.729,\, 0.025,\, 0.064,\, 0.556,\, 0.698,\, 0.528,\, 0.346,\, 0.010,\, 0.241,\, 0.569,\, 0.455$

V. Duzhin, A. Kuzmin, N. Vassiliev Bumping routes in the RSK algorithm

The bumping route is a sequence of boxes moved during a single iteration of the RSK algorithm in *P* tableau.

4 円

B → B

April 21, 2023

RSK defines a correspondence between a **uniform** measure on sequences and a **Plancherel** measure on pairs of Young tableaux of the same shape. In the limit, the shape of such tableaux is described by the Vershik-Kerov-Logan-Shepp curve [Vershik Kerov 85, Logan Shepp 77]:

$$\frac{2}{\pi}\left(u \operatorname{arcsin} u + \sqrt{1-u^2}\right)$$

RSK defines a correspondence between a **uniform** measure on sequences and a **Plancherel** measure on pairs of Young tableaux of the same shape. In the limit, the shape of such tableaux is described by the Vershik-Kerov-Logan-Shepp curve [Vershik Kerov 85, Logan Shepp 77]:

$$\frac{2}{\pi}\left(u \arcsin u + \sqrt{1-u^2}\right)$$

In [Romik, Śniady '16], formulae for computing the limit shapes of bumping routes are presented:

$$\begin{array}{ll} (1) & \Omega\left(u\right) = \frac{2}{\pi} \left(u \arcsin \frac{u}{2} + \sqrt{4 - u^2}\right) & (|u| \le 2) \,, \\ (2) & F\left(u\right) = \frac{1}{2} + \frac{1}{\pi} \left(\frac{u\sqrt{4 - u^2}}{4} + \arcsin \frac{u}{2}\right) & (|u| \le 2) \,, \\ (3) & u_{\alpha}\left(t\right) = \sqrt{t} \cdot F^{-1}\left(\frac{\alpha}{t}\right) & (0 \le \alpha \le t \le 1) \,, \\ (4) & v_{\alpha}\left(t\right) = \sqrt{t} \cdot \Omega\left(F^{-1}\left(\frac{\alpha}{t}\right)\right) & (0 \le \alpha \le t \le 1) \,, \\ (5) & y_{\alpha}\left(t\right) = \frac{v_{\alpha}(t) + u_{\alpha}(t)}{2} & (0 \le \alpha \le t \le 1) \,, \\ (6) & x_{\alpha}\left(t\right) = \frac{v_{\alpha}(t) - u_{\alpha}(t)}{2} & (0 \le \alpha \le t \le 1) \,, \\ (7) & k\left(\alpha\right) = x_{\alpha}\left(1\right) = \frac{\Omega\left(F^{-1}(\alpha)\right) - F^{-1}(\alpha)}{2} & (0 \le \alpha \le 1) \,. \end{array}$$

April 21, 2023

How the bumping routes converge to their limit curves with increasing size of Young tableaux (i.e. with increasing length of input sequence)?

The limit shapes of bumping routes for different lpha

V. Duzhin, A. Kuzmin, N. Vassiliev Bumping routes in the RSK algorithm

- We have constructed Young tableaux with sizes $n = 10^5..10^7$ boxes with a step of 10^5 .
- For each tableau size $n < 10^6$, 1000 tableaux and the corresponding routes were built. For larger sizes, 300 tableaux were built for each size.
- The following values of the element α were fed to the **input** of the RSK algorithm: $\alpha = 0.1, 0.3, 0.5, 0.7, 0.9$.
- For a fixed input value α and tableau size n, we calculate the root-mean-square distance S between the coordinates (x, y) of the boxes of the constructed bumping route and the corresponding coordinates (x*, y*) of the limit curve.
- For each of the k constructed bumping routes, the mean and variance of S were calculated.

Approximation of the function of distance between a bumping route and its limit shape

The computer experiments show that the distances between the bumping routes and the limit shapes are well approximated by the formula

$$f(n) = a \cdot n^{-\frac{1}{4}} + b \cdot n^{-\frac{1}{2}}$$

The distances of the bumping routes from their limit shapes

The distances of the bumping routes from their limit shapes

11 / 21

Maximum deviations of the approximation curves from the experimental bumping routes

α	а	b	max.dev.	α	а	b	max.dev.
0.1	0.244	0.191	0.000217	0.5	0.296	0.475	0.000230
0.15	0.270	0.184	0.000239	0.55	0.289	0.597	0.000211
0.2	0.285	0.213	0.000349	0.6	0.281	0.622	0.000233
0.25	0.296	0.236	0.000301	0.65	0.266	0.826	0.000294
0.3	0.302	0.264	0.000209	0.7	0.253	0.914	0.000216
0.35	0.303	0.325	0.000249	0.75	0.233	1.136	0.000270
0.4	0.305	0.319	0.000202	0.8	0.210	1.457	0.000228
0.45	0.304	0.331	0.000298	0.85	0.179	1.925	0.000167

- In our computer experiments, we have studied the coordinates distributions of the ends of the bumping routes.
- This experiment uses only end points of bumping routes instead of their entire trajectories as the previous one.
- Also we estimated the values of the parameters of the function approximating these distributions.

A limit curve and a bumping route for each lpha

V. Duzhin, A. Kuzmin, N. Vassiliev Bumping routes in the RSK algorithm

14 / 21

A limit curve and 300 bumping routes for each lpha

April 21, 2023

A limit curve and 300 bumping routes for α =0.5

April 21, 2023

The distribution of the ends of the bumping routes

V. Duzhin, A. Kuzmin, N. Vassiliev Bumping routes in the RSK algorithm April 21, 2023

17 / 21

Dependence of the mean of the Gaussian for different lpha

V. Duzhin, A. Kuzmin, N. Vassiliev Bumping routes in the RSK algorithm April 21, 2023 18/21

Dependence of the st. dev. of the Gaussian for different lpha

19/21

- Our computer experiments show **good agreement** with the theoretical results obtained in [Romik, Śniady '16];
- The **distance** between the bumping routes and the limit shapes is well-approximated by the **formula**

$$f(n) = a \cdot n^{-\frac{1}{4}} + b \cdot n^{-\frac{1}{2}}$$

- **Convergence** of the bumping routes to their limit shapes turns out to be rather **slow** with the principal term proportional to $n^{-\frac{1}{4}}$;
- The distributions of the ends of bumping routes are well-approximated by a Gaussian distribution;
- In the future we plan to extend our research to the strict Young tableaux case.

Thanks for your attention!

э