
TouIST, a Pedagogical Tool for Logic, Algebra and
Discrete Mathematics
PCA-2023, Saint-Petersburg

Sergei Soloviev, IRIT, France

21/04/2023

1

TouIST as a Pedagogical Tool

This introduction is based on joint paper:
O. Gasquet, D. Longuin, E. Lorini, F. Maris, P. RÃ c©gnier, S.
Soloviev. TouIST, a Teacher-and Student-Friendly Language for
Propositional Logic and Discrete Mathematics. Computer tools in
education, no. 2, pp. 13-25, 2021.

2

TouIST as a Pedagogical Tool

TOUIST offers a high-level friendly language for logically modeling
various problems in a very compact way using solvers.
It consists of:
A graphical interface allowing interactive input of the target model;
A translation module (compiler) from the input language of
TOUIST into a language directly understandable by different
solvers;
A module for viewing models calculated by the solvers.
This flexible design permits to use TOUIST with different solvers.

3

TouIST as a Pedagogical Tool

Currently:
with SAT solvers (propositional logic or logic of predicates on finite
domain);
QBF (authorizing quantification on propositional formulas);
SMT (SAT Modulo Theories, for the treatment of problems
involving numeric calculus on integer or rational numbers).
The goal: to allow the user to concentrate on the modeling of a
given problem without worrying about the technical details related
to the use of solvers.
(linear space translation of formulas into prenex and conjunctive
normal form using extension rules [Tseitin1983], translation into
language DIMACS, QDIMACS or SMT-LIB depending on the
selected solver)
(languages used as standard as input to solvers are not very easy
to handle directly)

4

TouIST as a Pedagogical Tool

Beyond the Boolean connectives of propositional logic, the input
language of TOUIST has sets, conjunctions and disjunctions
parametrized by sets, abbreviations. . .
One can directly express complex propositional formulas such as:∧

i∈{1..N}

∨
X∈S(i)

∧
n∈X

∧
m∈Y|m 6=n

(pi,X ,n ⇒ ¬pi,X ,m)

the variable N may be here a particular integer, the S(i) as sets of
sets of symbols for each i ∈ {1, . . . ,N}, and Y as a set of
symbols.
E.g., N = 2, S(1) = {{blue, red}, {red}},
S(2) = {{red}, {blue}, {white,blue, red}}, and Y = {white, red}.

5

TouIST as a Pedagogical Tool

In the TOUIST input language:

$N = 2
$S(1) = [[blue, red], [red]]
$S(2) = [[red], [blue], [white, blue, red]]
$Y = [white, red]
bigand $i in [1..$N]:
bigor $X in $S($i):

bigand $n in $X:
bigand $m in $Y when $m!=$n:

p($i,$X,$n) => not p($i,$X,$m)
end

end
end

end

6

TouIST as a Pedagogical Tool

One can use multiple binding of indexes as in
∧

i∈A,j∈B and rich
computations on indexes as well as on domain sets as in∧

i∈(A∪(B∩C)).
In the TOUIST input language:

bigand $i,$j in $A,$B:
...

end
bigand $i in $A union ($B inter $C):
...

end

Remark. One may remember that
∧

and
∨

represent also
universal quantifier ∀ and existential quantifier ∃ over finite sets of
indexes.

7

TouIST as a Pedagogical Tool

Running the solver only consists in clicking a button.
The tool displays the models successively computed by the
solvers in the syntax of the input formula.
Literals of interest can be filtered by regular expressions.
TOUIST can also be used entirely from the command line and/or
batch modus for interfacing with intelligent agent architectures
capable of reasoning and planning actions.
Typically for example, checking the validity of an argument,
determining the executable actions, checking that a plan is valid or
even calculate a complete plan of actions to satisfy a goal, etc.
TOUIST is publicly available for download from the following site:
https://www.irit.fr/TouIST/

8

https://www.irit.fr/TouIST/

Examples

Usefulness of TOUIST in teaching comes from the possibility of
easily encode (and then display the solutions) of sufficiently
sophisticated examples.
We shall briefly present several examples in each of the
categories mentioned in the title:
Logics
Algebra
Discrete maths

9

Examples

Solvers, associated with TOUIST produce models that may be
displayed “sequentially” (one after another) on the screen.
Suppose that H = {H1, . . . ,Hn} is a set of n assumptions (logical
formulas) and C a formula.
It would be tedious to verify that C is true for all models of H.
However, one proceeds indirectly by using the property: H |= C if
and only if H ∪ {¬C} is unsatisfiable. in other words, to check if
H |= C, we will test if the formulas H1, H2, . . . , Hn, ¬C taken all
together are satisfiable.
If this is not the case one can conclude that H |= C. If this is the
case, one will have at least one counter-model.

10

Examples (admissibility of rules)

In the sequent calculus for classical logic
Each sequent S = H1, ...,Hn ` C may be represented as the
formula S = H1 ∧ ... ∧ Hn ⇒ C.
To verify the validity of the rule

S1...Sk

S

one needs just to verify that the set S1, ...,Sn,¬S is not satifiable.

11

Examples (admissibility of rules)

In non-classical calculi (to some extent)
If one wants to use TOUIST to verify admissibility in other calculi,
the idea to use conservativity results comes to mind.
E.g., Glivenko classes of formulas where classical derivability is
conservative w.r.t. intuitionistic.
However, the description of these classes is rather complex if one
thinks about a pedagogical “demo”.
There are some others that may be used. An old and rather
technical theorem of mine [Babaev-Soloviev 1979, Soloviev
1984]) established that
If the sequent S = H1, ...,Hn ` C in the (∧,⇒)-fragment of
propositional calculus is balanced (each variable occurs exactly
twice with opposite signs) then it is derivable classically iff it is
derivable intuonistically (or even in multiplicative linear logic).

12

1 So, for example, the rules

Γ,C ⇒ p ` p
Γ ` C

Γ,A⇒ p,p ⇒ B,∆ ` C
Γ,A⇒ B,∆ ` C

are admissible in all these calculi (with p fresh),
2 and the rule

Γ,A,∆ ` C
Γ, (A ∧ p ⇒ q)⇒ q,∆ ` C ∧ p

is not.
3 This kind of examples may help to discuss such questions as the

question of conservativity, the role of substitution, structural rules.

13

Examples (second order logic)

The possibility to use sets as indexes and quantification over finite
sets may be used to illustrate higher order properties.∧

j∈P{1..N}

∨
i∈j

∧
k∈j

pik

Here pik represent some relation on [1..N], j ∈ P{1..N} are
subsets, and the formula represents the condition of wellordering.
(Other formulas need to be added to make pij an order relation.)

$N = 10
$Y = powerset([1..$N])
bigand $j in $Y when $j!=[]:
bigor $i in j:
bigand $k in $j:
p($i, $k)

end
end
end

14

An algebraic example

Since indexed propositional variables in TouIST may be routinely
used to represent predicates over finite sets, it is convenient to
use predicates to represent algebraic operations and express their
properties via ∨ and ∧.
E.g., xijk may represent i × j = k for some binary operation
× : X × X → X on a finite set X .∧

i∈X

∧
j∈X

∧
k∈X

xijk ⇒ xjik

will represent commutativity of ×.
Associativity of × will be expressed by∧

i∈X

∧
j∈X

∧
k∈X

∧
l∈X

∧
m∈X

∧
n∈X

(xijk ∧ xjlm ∧ xkln ⇒ ximn).

15

An algebraic example

The formulas ∧
i∈X

∧
j∈X

∨
k∈X

xijk ,

∧
i∈X

∧
j∈X

∧
k∈X

∧
l∈X ,l 6=k

(xijk ⇒ ¬xijl)

express the fact that × is defined for all i , j and has unique value k .
They may be easily written using TOUIST. (See demo in the end.)
TOUIST is sufficiently powerful to produce all such operations ×
for the sets X that are large enough for teaching purposes. Each
operation will be displayed as a line in the truth table.
Moreover, TOUIST may be used to verify quickly simple equalities
modulo theory, associativity and commutativity in this example.

16

Other kinds of examples

TOUIST is good for reasoning with other kinds of examples of
more applied character.
Static reasoning.
Dynamic reasoning.
Solving planning tasks.
Many of them may be found in our paper [Gasquet et al., 2021].

17

Other kinds of examples

Here I just briefly outline the examples.
Solving puzzles with SAT
TOUIST allows to encode and solve static generalized games
such as the well known Sudoku for a N × N grid.
It also allows to solve well-known puzzles and games involving
epistemic deductive reasoning, given existing polynomial
embeddings of fragments of epistemic logic into propositional
logic. This includes “Guess Who?” and the muddy children puzzle
Solving Puzzles with SMT
Binario (binary game) consists in filling a grid by deduction with
only 0 and 1. It is possible to model it in propositional logic, but to
obtain a more compact encoding one can use SMT (SAT Modulo
Theories) with atoms of QF-LIA (linear arithmetic on integers)

18

Other kinds of examples

Dynamic Reasoning with TOUIST

One may simulate a two-players game, for example Nim.
It is possible to describe the tree of a game.
The language of QBF allows to express naturally and concisely
the existence of winning strategies (TOUIST includes QBF as one
of possible options).
TOUIST natively integrates the QBF solver Quantor 3.2 and can
be interfaced with other solvers supporting the QDIMACS format.
Selecting this prover in TOUIST allows to use quantifiers ∀ and ∃
on propositional variables.

19

Other kinds of examples

4

2 3

0 1 1 2

0 0 0 1

0

Figure: Solutions for Nim’s game with 4 matches and 2 players. The winning
strategy for player 0 is in red.

20

Other kinds of examples

Planning as satisfiability
A planning task can be transformed into a propositional formula
whose models correspond to solution plans (i.e., sequences or
steps of actions starting from an initial state and leading to a goal).
These models can be found using a SAT solver
It is possible to include temporal aspects:
beyond classic planning, TOUIST allows to encode and solve
conformant planning tasks with QBF;
It can also be used to solve temporal planning tasks involving
durative actions, exogenous events and temporally extended
goals with SMT encodings.

21

Conclusion

TOUIST offers a friendly language together with a modular tool
that makes it easier to use SAT, SMT and QBF solvers.
TOUIST can be seen as a compiler from extended and high-level
logical languages to efficient independent solvers.
These two sides give it great ease of use, a wide application
spectrum and good computational performance.
As such, it constitutes an original and unique tool of its kind.

22

Conclusion

We use it as part of the introductory course to logic of bachelor of
mathematics and computer science, but also for the master’s
degree, as part of practical work and projects. Students are thus
called upon to go through the entire process, from formalization to
problem solving that goes far beyond toy problems that can be
solved by hand.
Even more, TOUIST is already used by researchers in the context
of work carried out in our laboratory and involving logical modeling
(planning, epistemic reasoning via translation into QBF, . . .), it
fills a lack existing in formal calculation software such as Maple,
SageMath, Mathematica or Maxima which only anecdotally
integrate logical tools.
In fact, TOUIST may be useful in all research domains where finite
modeling is relevant.

23

Conclusion

THANKS FOR YOUR ATTENTION!

24

References

[Gasquet et al., 2023] O. Gasquet, D. Longuin, E. Lorini, F. Maris, P.
Régnier, S. Soloviev. TouIST, a Teacher-and Student-Friendly
Language for Propositional Logic and Discrete Mathematics.
Computer tools in education, no. 2, pp. 13-25, 2021 (Engl.);
doi:10.32603/2071- 2340-2021-2-13-25
[Tseitin 1983] Tseitin G.S. On the Complexity of Derivation in
Propositional Calculus. Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967-1970, pp. 466-483, 1983.
[Babaev-Soloviev 79] A. A. Babaev, S. V. Solov’ev. A coherence
theorem for canonical maps in Cartesian Closed Categories. Zap.
Nauchn. Seminarov LOMI, v.88, pp.3 -29 (1979). English Translation:
Journal of Soviet Math., v.20 , pp.2263-2282 (1982)
[Soloviev 84] Ph.D. Thesis (LOMI).

25

