
Asymptotic forms of solutions to system
of nonlinear partial differential equations

Alexander Batkhin and Alexander Bruno

Abstract. In [1, 2] we considerably develop the methods of power geometry
for a system of partial differential equations and apply them to computing
the asymptotic forms of solutions to the problem of evolution of the turbulent
flow. For each equation of the system, its Newton polyhedron and its hyper-
faces with their normals and truncated equations are calculated. To simplify
the truncated systems, power-logarithmic transformations are used and the
truncated systems are further extracted. Results: (1) the boundary layer on
the needle is absent in liquid, while in gas it is described in the first approxi-
mation; (2) one-dimensional model of evolution of turbulent bursts have eight
asymptotic forms, presented explicitly.

1. Introduction
A universal asymptotic nonlinear analysis is formed, whose unified methods al-
low finding asymptotic forms and expansions of solutions to nonlinear equations
and systems of different types: Algebraic; Ordinary differential equations (ODEs);
Partial differential equations (PDEs).

This calculus contains two main methods: 1) Transformation of coordinates,
bringing equations to normal form; 2) Separating truncated equations.

Two kinds of coordinate changes can be used to analyze the resulting equa-
tions: A) Power ; B) Logarithmic.

Here, we consider systems of nonlinear partial differential equations in two vari-
ants:

a) with solvable truncated system; b) without solvable truncated system. We
show how to find asymptotic forms of their solutions using algorithms of power
geometry. In this case, by asymptotic form of solution, we mean a simple expression
in which each of the independent or dependent variables tends to zero or infinity.

Here, we consider two fluids problems: (a) boundary layer and (b) turbulence
flow by methods of power geometry.
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For problem (a), it was firstly given in [3, Chapter 6, Section 6]; see also [4, 5].
A boundary layer on a needle has a stronger singularity than on a plane, and it
was first considered in [5].

For problem (b), we firstly make it in [1, 2] and we are not sure that it can
be solved with the usual analysis.

The structure of the paper is as follows. Section 2 outlines the basics of power
geometry for partial differential equations. In Section 3, the theory and algorithms
are further developed to apply to variant (b) problems. In Section 4, they are used
to compute asymptotic forms of evolution of turbulent flow.

2. Basics of Power Geometry [3, Chapters VI–VIII]
Let X = (x1, . . . , xm) ∈ Cm be independent and Y = (y1, . . . , yn) ∈ Cn be
dependent variables. Place Z = (X,Y ) ∈ Cn+m. Differential monomial a(Z) is a
product of an ordinary monomial cZR = czr11 · · · zrm+n

m+n , where c = const ∈ C, and
a finite number of derivatives of the form

∂lyj

∂xl1
1 · · · ∂lmxm

≡ ∂lyj
∂XL

, lj ≥ 0,

m∑
j=1

lj = l, L = (l1, . . . , lm) . (1)

The differential monomial a(Z) corresponds to its vector exponent of degree
Q(a) ∈ Rm+n, formed by the following rules:

Q
(
ZR

)
= R, Q

(
∂lyj/∂X

L
)
= (−L,Ej), (2)

where Ej is the unit vector. The product of monomials corresponds to the sum of
their vector exponents of degree: Q(ab) = Q(a) + Q(b). Differential sum is the
sum of differential monomials:

f(Z) =
∑

ak(Z). (3)

The set S(f) of vector exponents Q(ak) is called support of sum f(Z). The clo-
sure of the convex hull

Γ(f) =
{
Q =

∑
λjQj , Qj ∈ S, λj ≥ 0,

∑
λj = 1

}
of the support S(f) is called the polyhedron of the sum f(Z). The boundary ∂Γ

of the polyhedron Γ(f) consists of generalized faces Γ
(d)
j , where d = dimΓ

(d)
j ,

0 ≤ d ≤ m+ n− 1. Each face Γ
(d)
j corresponds to:

• Normal cone: U
(d)
j = {P ∈ Rm+n

∗ : ⟨P,Q′⟩ = ⟨P,Q′′⟩ > ⟨P,Q′′′⟩ , }, where
Q′, Q′′ ∈ Γ

(d)
j , Q′′′ ∈ Γ\Γ(d)

j , and the space Rm+n
∗ is conjugate to the space

Rm+n and ⟨·, ·⟩ is a scalar product;
• Truncated sum: f̂ (d)

j (Z) =
∑

ak(Z) over Q(ak) ∈ Γ
(d)
j

⋂
S.

Consider a system of equations:

fi(X,Y ) = 0, i = 1, . . . , n, (4)
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where fi are differential sums. Each equation fi = 0 corresponds to: its support
S(fi); its polyhedron Γ(fi) with a set of faces Γ

(di)
ij in the main space Rm+n; set

of their normal cones U
(di)
ij in the dual space Rm+n

∗ ; set of truncated equations
f̂
(di)
ij (X,Y ) = 0.

The set of truncated equations

f̂
(di)
iji

(X,Y ) = 0, i = 1, . . . , n, (5)

is a truncated system if the intersection

U
(d1)
1ji

∩ · · · ∩U
(dn)
njn

. (6)

is not empty. A truncated system is always a quasi-homogeneous system.
In the solution of the system (4),

yi = φi(X), i = 1, . . . , n, (7)

where φi are series in powers of xk and their logarithms, each φi corresponds to
its support, polyhedron, normal cones ui, and truncations. Here, the logarithm
lnxi has a zero exponent of degree on xi. The set of truncated solutions yi = φ̂i,
i = 1, . . . , n, corresponds to the intersection of their normal cones: u =

⋂n
i=1 ui ⊂

Rm+n
∗ . If it is not empty, it corresponds to truncated solution: yi = φ̂i, i = 1, . . . , n.

Theorem 1. If the normal cone u intersects the normal cone (6), then the trunca-
tion yi = φ̂i(X), i = 1, . . . , n, of this solution satisfies the truncated system (5).

Multiplying the differential sum (5) with the support S(f) by the monomial
ZR gives the differential sum, g(Z) = ZRf(Z), with the support S(g) = R+S(f).
Thus, the multiplication leads to a shift of supports. Multiplications by monomials
form a group of linear transformations of supports, and they can be used to simplify
supports, differential sums, and systems of equations.

3. Algorithms of power geometry and their implementation

A matrix α is called unimodular if all its elements are integer and detα = ±1.

Problem 1. Let n-dimensional integer vector A = (a1, a2, . . . , an) be given. Find
an n-dimensional unimodular matrix α such that the vector Aα = C = (c1, . . . , cn)
contains only one coordinate cn different from zero.

Its solution was given in [6, 7, 8].
Transformation of the variables

lnW = (lnZ)α, where α =

(
α11 α12

0 α22

)
, (8)

is called power transformation, where α11, α22 are square matrices of sizes m and
n, respectively and lnZ = (ln z1, . . . , ln zm+n).
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Theorem 2 ([3]). The power transformation (8) changes a differential monomial
a(Z) with exponent of degree Q(a) into a differential sum b(W ) with exponent of
degree Q(b):

R = Q(b) = Q(a)α−1∗, (9)
where ∗ denotes transposition.

Theorem 3 ([3]). If the system (4) is a quasi-homogeneous system and d = dim Γ̃,
then there exist a power transformation (8) and monomials ZTi , i = 1, . . . , n which
change the system (4) into the system gi(W ) ≡ ZTifi(Z) = 0, i = 1, . . . , n, where
all gi(W ) are differential sums, and all their supports S(gi) have m+n−d identical
coordinates qj equal to zero.

Transformation
ζj = ln zj (10)

is called logarithmic transformation.

Theorem 4 ([9]). Let f(Z) be such a differential sum that for all its monomials,
jth component of qj vector degree exponent Q = (q1, . . . , qm+n) is zero, then as a
result of the logarithmic transformation (10), a differential sum f(Z) transforms
into a differential sum from z1, . . . , ζj , . . . , zn.

For zj → 0 or ∞, the coordinate ζj = lnwj always tends to ±∞. If we are
interested only in those solutions (7) which have a normal cone u intersecting
a given cone K, then the cone K is called the cone of problem. Thus, after the
logarithmic transformation (10) for the coordinate ζj in the cone of the problem,
we have pj ≥ 0.

In the following, we will not consider all possible truncated systems (5),
but only those in which one of the equations has dimension di = m + n − 1.
The calculations show that in this case the above procedure will cover all the
truncated systems. Finally, it is convenient to combine the power and logarithmic
transformations.

The CAS Maple 2021 was used for calculations in this work. A library of
procedures based on the PolyhedralSets CAS Maple package was developed to
implement the algorithms of power geometry. The library includes calculation pro-
cedures:

• vector power exponent Q of the differential monomial a(Z) for a given order
of independent and dependent variables;

• support S of a partial differential equation written as a sum of differential
monomials;

• Newton’s polyhedron Γ in the form of a graph of generalized faces Γ(d)
j of all

dimensions d for the given support of the equation ; the number j is given
by the program; each generalized face has its own number j; each line of the
graph contains all generalized faces Γ

(d)
j of the same dimension d, the first

line contains the Newton’s polyhedron Γ, the next line contains all faces
Γ
(m+n−1)
j of dimension m+n− 1 and so on; the last line contains the empty
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set; if Γ
(d)
j ⊂ Γ

(d+1)
k , then they are connected by an arrow; in [3, Ch. 1,

Section 1], “the structural diagram” was used that is similar to the graph and
differs from it in two properties: numeration of faces Γ

(d)
j is independent for

each dimension d and arrows are replaced by segments (see also [10]);
• normal vector Nj for the each generalized face Γ

(m+n−1)
j for the second line

of the graph;
• truncated equation f̂

(d)
j = 0 by the given number j of the generalized face or

by a given normal vector Nj ;
• normal cone of the corresponding generalized face: if the face

Γ
(d)
j = Γ

(m+n−1)
i ∩ Γ

(m+n−1)
k ∩ · · · ∩ Γ

(m+n−1)
l ,

then the normal cone U
(d)
j is the conic hull of the normals Ni, Nk, . . . , Nl;

• power or logarithmic transformation of the original variables by a given nor-
mal N of the hyperface. For this purpose, the algorithms for constructing the
unimodular matrix described in [6, 7, 8] are used.

4. The k–ε Model of Evolution of Turbulent Bursts
According to [11, 12, 13], the model is described by the system

kt =

(
k2

ε
kx

)
x

− ε,

εt =

(
k2

ε
εx

)
x

− γ
ε2

k
.

(11)

Here, time t and coordinate x are independent variables, the turbulent density
k and the dissipation rate ε are dependent variables, and γ is a real parameter.
Here, m = n = 2, m+ n = 4 and x1 = t, x2 = x, y1 = k, y2 = ε.

In [1, 2] equations (11) are written as differential sums, such truncated sys-
tems are selected, which have one 3-dimensional equation, power and logarithmic
transformations are applied and more simple systems are obtained. If they are not
solvable, the computations are repeated till solvable systems are obtained, Their
solutions, written in initial coordinates, are asymptotic forms of solutions to initial
system.
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