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Abstract

In [Bruno, Batkhin, 2022; 2023] we considerably develop the methods of power geometry
for a system of partial differential equations and apply them to computing the asymptotic
forms of solutions to the problem of evolution of the turbulent flow. For each equation
of the system, its Newton polyhedron and its hyperfaces with their normals and truncated
equations are calculated. To simplify the truncated systems, power-logarithmic transforma-
tions are used and the truncated systems are further extracted. Results:

(1) the boundary layer on the needle is absent in liquid, while in gas it is described in the
first approximation;

(2) one-dimensional model of evolution of turbulent bursts have eight asymptotic forms,
presented explicitly.
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Introduction

Introduction (1)

A universal asymptotic nonlinear analysis is formed, whose unified methods allow
finding asymptotic forms and asymptotic expansions of solutions to nonlinear equa-
tions and systems of different types:

Algebraic
Ordinary differential equations (ODEs)
Partial differential equations (PDEs)

This calculus contains two main methods:
1 Transformation of coordinates, bringing equations to normal form
2 Separating truncated equations
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Introduction

Introduction (2)

Two kinds of coordinate changes can be used to analyze the resulting equations:
A) Power
B) Logarithmic

Here, we consider systems of nonlinear partial differential equations in two variants:

a) with solvable truncated system
b) without solvable truncated system

We show how to find asymptotic forms of their solutions using algorithms of power
geometry. In this case, by asymptotic form of solution, we mean a simple expression
in which each of the independent or dependent variables tends to zero or infinity.
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Introduction

Introduction (3)

Here, we consider two fluids problems:
(a) boundary layer and
(b) turbulence flow by methods of power geometry.

For problem (a), it was firstly given in [Bruno, 2000, Chapter 6, Section 6]; see
also [Blasius, 1908; Bruno, Shadrina, 2007]. A boundary layer on a needle has a
stronger singularity than on a plane, and it was first considered in [Bruno, Shadrina,
2007].

For problem (b), we firstly make it in [Bruno, Batkhin, 2022; 2023] and we are not
sure that it can be solved with the usual analysis.
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Introduction

The structure of the talk

Section 2 outlines the basics of power geometry for partial differential equa-
tions

In Section 3, the theory and algorithms are further developed to apply to
variant (b) problems.
In Section 4 we consider the 𝑘-𝜀 model of evolution of turbulent bursts and
simplify it by power and logarithmic transformations.
In Section 5 we show a way of further simplification of equations using the
selections of truncated systems.
In Section 6 we give a list of all asymptotic forms in the initial coordinates.
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Introduction

This talk is based on
Bruno A. D., Batkhin A. B. Computation of asymptotic forms of solutions to
system of nonlinear partial differential equations. // Preprints of KIAM. 2022.
No. 48. P. 36. (in Russian) and
Bruno A. D., Batkhin A. B. Asymptotic forms of solutions to system of
nonlinear partial differential equations. // Universe. 2023. Vol. 9, no. 1. P. 35
(open access)
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Basics of power geometry

Basics of power geometry (1)

For more detail, see [Bruno, 2000, Chapters VI–VIII]

Let 𝑋 = (𝑥1, . . . , 𝑥𝑚) ∈ C𝑚 be independent and 𝑌 = (𝑦1, . . . , 𝑦𝑛) ∈ C𝑛 be
dependent variables. Place 𝑍 = (𝑋,𝑌 ) ∈ C𝑛+𝑚

Differential monomial 𝑎(𝑍) is a product of an ordinary monomial 𝑐𝑍𝑅 =
𝑐𝑧𝑟11 · · · 𝑧𝑟𝑚+𝑛

𝑚+𝑛 , where 𝑐 = const ∈ C, and a finite number of derivatives of the
form

𝜕𝑙𝑦𝑗

𝜕𝑥𝑙11 · · · 𝜕𝑙𝑚𝑥𝑚
≡ 𝜕𝑙𝑦𝑗

𝜕𝑋𝐿
, 𝑙𝑗 ⩾ 0,

𝑚∑︁
𝑗=1

𝑙𝑗 = 𝑙, 𝐿 = (𝑙1, . . . , 𝑙𝑚) .
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Basics of power geometry

Basics of power geometry (2)

The differential monomial 𝑎(𝑍) corresponds to its vector exponent of degree 𝑄(𝑎) ∈
R𝑚+𝑛, formed by the following rules:

𝑄
(︀
𝑍𝑅

)︀
= 𝑅, 𝑄

(︁
𝜕𝑙𝑦𝑗/𝜕𝑋

𝐿
)︁
= (−𝐿,𝐸𝑗),

where 𝐸𝑗 is the unit vector.

The product of monomials corresponds to the sum of their vector exponents of
degree:

𝑄(𝑎𝑏) = 𝑄(𝑎) +𝑄(𝑏)
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Basics of power geometry

Basics of power geometry (3)

Differential sum is the sum of differential monomials:

𝑓(𝑍) =
∑︁

𝑎𝑘(𝑍).

The set S(𝑓) ⊂ R𝑚+𝑛 of vector exponents of degrees 𝑄(𝑎𝑘) is called support of
sum 𝑓(𝑍). The closure of the convex hull

Γ(𝑓) =
{︁
𝑄 =

∑︁
𝜆𝑗𝑄𝑗 , 𝑄𝑗 ∈ S, 𝜆𝑗 ⩾ 0,

∑︁
𝜆𝑗 = 1

}︁
of the support S(𝑓) is called the polyhedron of the sum 𝑓(𝑍).
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Basics of power geometry

Basics of power geometry (4)

The boundary 𝜕Γ of the polyhedron Γ(𝑓) consists of generalized faces Γ
(𝑑)
𝑗 , where

𝑑 = dimΓ
(𝑑)
𝑗 , 0 ⩽ 𝑑 ⩽ 𝑚+ 𝑛− 1. Each face Γ

(𝑑)
𝑗 corresponds to:

Normal cone:

U
(𝑑)
𝑗 =

{︀
𝑃 ∈ R𝑚+𝑛

* :
⟨︀
𝑃,𝑄′⟩︀ =

⟨︀
𝑃,𝑄′′⟩︀ >

⟨︀
𝑃,𝑄′′′⟩︀}︀ ,

where 𝑄′, 𝑄′′ ∈ Γ
(𝑑)
𝑗 , 𝑄′′′ ∈ Γ∖Γ(𝑑)

𝑗 , and the space R𝑚+𝑛
* is conjugate to the

space R𝑚+𝑛 and ⟨·, ·⟩ is a scalar product;

Truncated sum:

𝑓
(𝑑)
𝑗 (𝑍) =

∑︁
𝑎𝑘(𝑍) over 𝑄(𝑎𝑘) ∈ Γ

(𝑑)
𝑗

⋂︁
S.
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Basics of power geometry

Basics of power geometry (5)

Consider a system of equations:

𝑓𝑖(𝑋,𝑌 ) = 0, 𝑖 = 1, . . . , 𝑛, (1)

where 𝑓𝑖 are differential sums. Each equation 𝑓𝑖 = 0 corresponds to:

its support S(𝑓𝑖);

its polyhedron Γ(𝑓𝑖) with a set of faces Γ
(𝑑𝑖)
𝑖𝑗 in the main space R𝑚+𝑛;

set of its normal cones U
(𝑑𝑖)
𝑖𝑗 in the dual space R𝑚+𝑛

* ;

set of truncated equations 𝑓
(𝑑𝑖)
𝑖𝑗 (𝑋,𝑌 ) = 0.
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Basics of power geometry

Basics of power geometry (6)

The set of truncated equations

𝑓
(𝑑𝑖)
𝑖𝑗𝑖

(𝑋,𝑌 ) = 0, 𝑖 = 1, . . . , 𝑛, (2)

is a truncated system if the intersection

U
(𝑑1)
1𝑗𝑖

∩ · · · ∩U
(𝑑𝑛)
𝑛𝑗𝑛

is not empty. A truncated system is always a quasi-homogeneous system.
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Basics of power geometry

Basics of power geometry (7)

In the solution of the system (1),

𝑦𝑖 = 𝜙𝑖(𝑋), 𝑖 = 1, . . . , 𝑛, (3)

where 𝜙𝑖 are series in powers of 𝑥𝑘 and their logarithms, each 𝜙𝑖 corresponds to its
support, polyhedron, normal cones u𝑖, and truncations. Here, the logarithm ln𝑥𝑖
has a zero exponent of degree on 𝑥𝑖.
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Basics of power geometry

Basics of power geometry (8)

The set of truncated solutions 𝑦𝑖 = 𝜙𝑖, 𝑖 = 1, . . . , 𝑛, corresponds to the intersection
of their normal cones:

u =

𝑛⋂︁
𝑖=1

u𝑖 ⊂ R𝑚+𝑛
* .

If it is not empty, it corresponds to truncated solution:

𝑦𝑖 = 𝜙𝑖, 𝑖 = 1, . . . , 𝑛.

Theorem 1.

If the normal cone u intersects the normal cone U
(𝑑1)
1𝑗𝑖

∩ · · · ∩ U
(𝑑𝑛)
𝑛𝑗𝑛

, then the
truncation 𝑦𝑖 = 𝜙𝑖(𝑋), 𝑖 = 1, . . . , 𝑛, of this solution satisfies the truncated system
𝑓
(𝑑𝑖)
𝑖𝑗𝑖

(𝑋,𝑌 ) = 0, 𝑖 = 1, . . . , 𝑛.
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Basics of power geometry

Basics of power geometry (9)

Multiplying the differential sum (2) with the support S(𝑓) by the monomial 𝑍𝑅

gives the differential sum, 𝑔(𝑍) = 𝑍𝑅𝑓(𝑍), with the support S(𝑔) = 𝑅 + S(𝑓).
Thus, the multiplication leads to a shift of supports. Multiplications by monomials
form a group of linear transformations of supports, and they can be used to simplify
supports, differential sums, and systems of equations
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Algorithms of power geometry and their implementations

Algorithms of power geometry (1)

A matrix 𝛼 is called unimodular if all its elements are integer and det𝛼 = ±1.

Problem 1.

Let 𝑛-dimensional integer vector 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) be given. Find an 𝑛-
dimensional unimodular matrix 𝛼 such that the vector 𝐴𝛼 = 𝐶 = (𝑐1, . . . , 𝑐𝑛)
contains only one coordinate 𝑐𝑛 different from zero.

Its solution was given in [Bruno, Azimov, 2022; 2023a,b].
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Algorithms of power geometry and their implementations

Algorithms of power geometry (2)

Transformation of the variables

ln𝑊 = (ln𝑍)𝛼, where 𝛼 =

(︂
𝛼11 𝛼12

0 𝛼22

)︂
, (4)

is called power transformation, where 𝛼11, 𝛼22 are square matrices of sizes 𝑚 and
𝑛, respectively and ln𝑍 = (ln 𝑧1, . . . , ln 𝑧𝑚+𝑛).
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Algorithms of power geometry and their implementations

Algorithms of power geometry (3)

Theorem 2 ([Bruno, 2000]).

The power transformation (4) changes a differential monomial 𝑎(𝑍) with exponent
of degree 𝑄(𝑎) into a differential sum 𝑏(𝑊 ) with exponent of degree 𝑄(𝑏):

𝑅 = 𝑄(𝑏) = 𝑄(𝑎)𝛼−1*,

where * denotes transposition.
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Algorithms of power geometry and their implementations

Algorithms of power geometry (4)

Theorem 3 ([Bruno, 2000]).

If the system (1) is a quasi-homogeneous system and 𝑑 = dim Γ̃, then there exist
a power transformation (4) and monomials 𝑍𝑇𝑖 , 𝑖 = 1, . . . , 𝑛 which change the
system (1) into the system

𝑔𝑖(𝑊 ) ≡ 𝑍𝑇𝑖𝑓𝑖(𝑍) = 0, 𝑖 = 1, . . . , 𝑛,

where all 𝑔𝑖(𝑊 ) are differential sums, and all their supports S(𝑔𝑖) have 𝑚+ 𝑛− 𝑑
identical coordinates 𝑞𝑗 equal to zero.

Transformation
𝜁𝑗 = ln 𝑧𝑗 (5)

is called logarithmic transformation.
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Algorithms of power geometry and their implementations

Algorithms of power geometry (5)

Theorem 4 ([Bruno, 1996]).

Let 𝑓(𝑍) be such a differential sum that for all its monomials, 𝑗-th component
𝑞𝑗 of vector degree exponent 𝑄 = (𝑞1, . . . , 𝑞𝑚+𝑛) is zero, then as a result of the
logarithmic transformation (5), a differential sum 𝑓(𝑍) transforms into a differential
sum from 𝑧1, . . . , 𝜁𝑗 , . . . , 𝑧𝑛.

For 𝑧𝑗 → 0 or ∞, the coordinate 𝜁𝑗 = ln𝑤𝑗 always tends to ±∞. If we are
interested only in those solutions (3) which have a normal cone u intersecting a
given cone 𝐾, then the cone 𝐾 is called the cone of problem. Thus, after the
logarithmic transformation (5) for the coordinate 𝜁𝑗 in the cone of the problem, we
have 𝑝𝑗 ≥ 0.
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Algorithms of power geometry and their implementations

Algorithms of power geometry (6)

In the following, we will not consider all possible truncated systems (2), but only
those in which one of the equations has dimension 𝑑𝑖 = 𝑚 + 𝑛 − 1, i.e. the
dimension of its Newton polyhedron. The calculations show that in this case the
above procedure will cover all the truncated systems. Finally, it is convenient to
combine the power and logarithmic transformations.
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Algorithms of power geometry and their implementations

Implementation of power geometry algorithms (1)

The CAS Maple 2021 was used for calculations in this work. A library of procedures
based on the PolyhedralSets CAS Maple package was developed to implement
the algorithms of power geometry. The library includes calculation procedures:

vector power exponent 𝑄 of the differential monomial 𝑎(𝑍) for a given order
of independent and dependent variables;

support S of a partial differential equation written as a sum of differential
monomials;
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Algorithms of power geometry and their implementations

Implementation of power geometry algorithms (2)

Newton’s polyhedron Γ in the form of a graph of generalized faces Γ
(𝑑)
𝑗 of all

dimensions 𝑑 for the given support of the equation ; the number 𝑗 is given
by the program; each generalized face has its own number 𝑗; each line of the
graph contains all generalized faces Γ(𝑑)

𝑗 of the same dimension 𝑑, the first line

contains the Newton’s polyhedron Γ, the next line contains all faces Γ(𝑚+𝑛−1)
𝑗

of dimension 𝑚 + 𝑛 − 1 and so on; the last line contains the empty set; if
Γ
(𝑑)
𝑗 ⊂ Γ

(𝑑+1)
𝑘 , then they are connected by an arrow; in [Bruno, 2000, Ch. 1,

Section 1], the “structural diagram” was used that is similar to the graph (see
also [Conradi (et al.), 2017]);

external normal vector 𝑁𝑗 for the each generalized face Γ(𝑚+𝑛−1)
𝑗 for the second

line of the graph;

truncated equation 𝑓
(𝑑)
𝑗 = 0 by the given number 𝑗 of the generalized face or

by a given normal vector 𝑁𝑗 ;
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Algorithms of power geometry and their implementations

Implementation of power geometry algorithms (3)

normal cone of the corresponding generalized face: if the face

Γ
(𝑑)
𝑗 = Γ

(𝑚+𝑛−1)
𝑖 ∩ Γ

(𝑚+𝑛−1)
𝑘 ∩ · · · ∩ Γ

(𝑚+𝑛−1)
𝑙 ,

then the normal cone U(𝑑)
𝑗 is the conic hull of the external normals 𝑁𝑖, 𝑁𝑘, . . . , 𝑁𝑙;

power or logarithmic transformation of the original variables by a given normal
𝑁 of the hyperface. For this purpose, the algorithms for constructing the
unimodular matrix described in [Bruno, Azimov, 2022; 2023a,b] are used.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (1)

According to [Kolmogorov, 1991; Bertsch (et al.), 1994; Galaktionov, 1999], the
one-dimensional model is described by the system⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑘𝑡 =

(︂
𝑘2

𝜀
𝑘𝑥

)︂
𝑥

− 𝜀,

𝜀𝑡 =

(︂
𝑘2

𝜀
𝜀𝑥

)︂
𝑥

− 𝛾
𝜀2

𝑘
.

(6)

Here, time 𝑡 and coordinate 𝑥 are independent variables, the turbulent density 𝑘
and the dissipation rate 𝜀 are dependent variables, and 𝛾 is a real parameter. Here,
𝑚 = 𝑛 = 2, 𝑚+ 𝑛 = 4 and 𝑥1 = 𝑡, 𝑥2 = 𝑥, 𝑦1 = 𝑘, 𝑦2 = 𝜀.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (2)

In [Bruno, Batkhin, 2022; 2023] system (6) are written as differential sums, such
truncated systems are selected, which have one 3-dimensional equation, power and
logarithmic transformations are applied and more simple systems are obtained. If
they are not solvable, the computations are repeated till solvable systems are ob-
tained. Their solutions, written in initial coordinates, are asymptotic forms of solu-
tions to initial system.

According to Theorem 3 let us introduce new dependent variables:

𝑢 = 𝑍𝑅1 = 𝑡−1𝑘𝜀−1, 𝑣 = 𝑍𝑅2 = 𝑥−2𝑘3𝜀−2.

Then

𝑘 =
𝑥2𝑣

𝑡2𝑢2
, 𝜀 =

𝑥2𝑣

𝑡3𝑢3
. (7)
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (3)

This is a power transformation (4) with block matrix 𝛼, where

𝛼11 =

(︂
1 0
0 1

)︂
, 𝛼12 =

(︂
−1 0
0 −2

)︂
, 𝛼22 =

(︂
1 3
−1 −2

)︂
.

This power transformation is constructed directly on the support of the system such
that it lies in the coordinate plane.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (4)

Change of the variables (7) leads the system (6) to the form

𝑢𝑡(ln 𝑣)𝑡 − 2𝑢− 2𝑡𝑢𝑡 =

= 𝑣
(︀
6− 12𝑈 + 7𝑉 + 6𝑈2 − 7𝑈𝑉 + 2𝑉 2 − 2𝑥𝑈𝑥 + 𝑥𝑉𝑥

)︀
− 1,

𝑢𝑡(ln 𝑣)𝑡 − 3𝑢− 3𝑡𝑢𝑡 =

= 𝑣
(︀
6− 17𝑈 + 7𝑉 + 12𝑈2 − 10𝑈𝑉 + 2𝑉 2 − 3𝑥𝑈𝑥 + 𝑥𝑉𝑥

)︀
− 𝛾,

(8)

where 𝑈 = 𝑥 (ln𝑢)𝑥, 𝑉 = 𝑥 (ln 𝑣)𝑥.

Below, we assume that each intermediate variable is different from identical zero.
Thus, we can consider its logarithm
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (5)

After the logarithmic transformation,

𝜏 = ln 𝑡, 𝜉 = ln𝑥 (9)

the system (8) takes the form

𝑢(ln 𝑣)𝜏 − 2𝑢− 2𝑢𝜏 =

= 𝑣
(︀
6− 12𝑈 + 7𝑉 + 6𝑈2 − 7𝑈𝑉 + 2𝑉 2 − 2𝑈𝜉 + 𝑉𝜉

)︀
− 1, (10)

𝑢(ln 𝑣)𝜏 − 3𝑢− 3𝑢𝜏 =

𝑣
(︀
6− 17𝑈 + 7𝑉 + 12𝑈2 − 10𝑈𝑉 + 2𝑉 2 − 3𝑈𝜉 + 𝑉𝜉

)︀
− 𝛾, (11)

where 𝑈 = (ln𝑢)𝜉, 𝑉 = (ln 𝑣)𝜉.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (6)

Below, all computations are performed for the system 𝑆 consisting of a linear com-
bination of the original equations:
1) Equation 𝐸1𝑆 is the difference of the Equations (10) and (11);
2) Equation 𝐸2𝑆 is the difference of the tripled Equation (10) and the doubled

Equation (11).

As a result, the 𝑆 system takes the form

𝐸1𝑆 :𝑢+ 𝑢𝜏 = 5𝑣𝑈 − 7𝑣𝑈2 + 3𝑈𝑣𝜉 + 𝑣𝑈𝜉 + 𝛾 − 1,

𝐸2𝑆 :𝑢 (ln 𝑣)𝜏 = 6𝑣 − 2𝑣𝑈 + 7𝑣𝜉 − 6𝑣𝑈2 + 𝑈𝑣𝜉 + 𝑣𝜉𝑉+

𝑣𝜉𝜉 + 2𝛾 − 3.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (7)

To apply the Power Geometry procedures, Equations 𝐸1𝑆, 𝐸2𝑆 of the 𝑆 system
are rewritten as sums of differential monomials:

𝐸1𝑆 ≡𝑢3 + (𝑢𝜏 )𝑢
2 − 𝛾 𝑢2 − 5𝑣 (𝑢𝜉)𝑢− 𝑣 (𝑢𝜉,𝜉)𝑢− 3 (𝑢𝜉) (𝑣𝜉)𝑢+

+ 7𝑣 (𝑢𝜉)
2 + 𝑢2 = 0, (12)

𝐸2𝑆 ≡𝑢3 (𝑣𝜏 )− (𝑣𝜉,𝜉) 𝑣 𝑢
2 − 6𝑣2𝑢2 − 7 (𝑣𝜉) 𝑣 𝑢

2 − 2𝛾𝑣 𝑢2 − (𝑣𝜉)
2 𝑢2+

+ 2𝑣2 (𝑢𝜉)𝑢+ (𝑢𝜉) (𝑣𝜉) 𝑣𝑢+ 6𝑣2 (𝑢𝜉)
2 + 3𝑣 𝑢2 = 0. (13)

The supports of Equations (12) and (13) are

S(𝐸1𝑆) ={[−1, 0, 3, 0], [0,−2, 2, 1], [0,−1, 2, 1], [0, 0, 2, 0], [0, 0, 3, 0]}, (14)
S(𝐸2𝑆) ={[−1, 0, 3, 1], [0,−2, 2, 2], [0,−1, 2, 2], [0, 0, 2, 1], [0, 0, 2, 2]}. (15)
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (8)

To perform computations with a convex polyhedron of large dimension 𝑛, it is
convenient to represent the latter as an oriented graph, all vertices of which have a
unique number 𝑗 (identifier) and correspond to a generalized face Γ(𝑑)

𝑗 of appropriate
dimension 𝑑.

The top vertex of the graph contains the polyhedron Γ itself, the next level contains
generalized faces Γ

(𝑛−1)
𝑘 of dimension 𝑛− 1, below are generalized faces Γ

(𝑛−2)
𝑘 of

dimension 𝑛− 2, and so on.

The segments connecting vertices of the graph mean that the lower element (the
generalized edge) lies in the upper one (the generalized edge of higher dimension).
The alternative sum of the number of vertices of the graph in the lines is equal
to zero. It is the four dimensional Euler formula
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (9)

The graph of the polyhe-
dron Γ(𝐸1𝑆) computed
by support (14) is shown
in Figure 1.

Figure 1: Graph of the polyhedron Γ(𝐸1𝑆) of (12).
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (10)

The alternative sum of the numbers of elements in the rows is 1−5+10−10+5−
1 = 0. The polyhedron Γ(𝐸1𝑆) is a four-dimensional simplex and has five three-
dimensional faces with identifiers 161, 215, 233, 239, 241, computed by the program.
They correspond to the external normals

𝑁
(3)
161 = [1, 0, 0, 0], 𝑁

(3)
215 = [−1, 0,−1, 0], 𝑁

(3)
233 = [0, 0, 1, 1],

𝑁
(3)
239 = [0, 1, 0, 1], 𝑁

(3)
241 = [0,−1, 0,−2].
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (11)

The graph of the polyhe-
dron Γ(𝐸2𝑆) computed
by support (15) is shown
in Figure 2.

Figure 2: Graph of the polyhedron Γ(𝐸2𝑆) of (13).
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (12)

The polyhedron Γ(𝐸2𝑆) lies in a three-dimensional plane with the normal

𝑁
(3)
80 (𝐸2𝑆) = [1,0,1,0]

and is a three-dimensional simplex, i.e., the Equation (13) is quasi-homogeneous.

Let us construct all truncations corresponding to the cone of problem 𝐾[𝑆] =

{𝑝1, 𝑝2 ⩾ 0} according to change (9). The normals 𝑁
(3)
161, 𝑁

(3)
233, 𝑁

(3)
239, and 𝑁

(3)
80

fall into the cone of problem 𝐾[𝑆]. For each of the mentioned normals, we compute
the truncations of the system (12), (13) and reject trivial, i.e., those consisting of
a single algebraic monomial.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (13)

The truncation of Equation (13) corresponding to the normal 𝑁 (3)
239 and the trun-

cation of Equation (12) corresponding to the normal 𝑁 (3)
80 consist of one algebraic

monomial −6𝑢2𝑣2 and 𝑢3, respectively. There remain two nontrivial truncations,
which we denote by 𝑆(1) and 𝑆(2).

The truncated system 𝑆(1) depends on the variables 𝜉, 𝑢, 𝑣 and is the system of
ODEs, and cone of problem 𝐾[𝑆(1)] = {𝑝1 ⩾ 0}. The equations of the system
have the form:

𝐸1𝑆(1) ≡𝑢3 − 𝛾 𝑢2 − 5𝑣 (𝑢𝜉)𝑢− 𝑣 (𝑢𝜉,𝜉)𝑢− 3 (𝑢𝜉) (𝑣𝜉)𝑢+ 7𝑣 (𝑢𝜉)
2 + 𝑢2 = 0,

𝐸2𝑆(1) ≡(3− 2𝛾)𝑣 𝑢2 + 6𝑣2 (𝑢𝜉)
2 + (𝑢𝜉) (𝑣𝜉) 𝑣𝑢+ 2𝑣2 (𝑢𝜉)𝑢−

− (𝑣𝜉)
2 𝑢2 − 7 (𝑣𝜉) 𝑣 𝑢

2 − 6𝑣2𝑢2 − (𝑣𝜉,𝜉) 𝑣 𝑢
2 = 0.
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The 𝑘–𝜀 model of evolution of turbulent bursts

The 𝑘–𝜀 model of evolution of turbulent bursts (14)

The truncated system of PDEs 𝑆(2) contains the variables 𝜏 , 𝜉, 𝑢, 𝑣, and the cone
of problem 𝐾[𝑆(2)] = {𝑝1, 𝑝2 ⩾ 0}. The equations of the system have the form:

𝐸1𝑆(2) ≡ (𝑢𝜏 )𝑢
2 + 𝑢3 − 5𝑣 (𝑢𝜉)𝑢− 𝑣 (𝑢𝜉,𝜉)𝑢− 3 (𝑢𝜉) (𝑣𝜉)𝑢+ 7𝑣 (𝑢𝜉)

2 = 0,
(16)

𝐸2𝑆(2) ≡6𝑣2 (𝑢𝜉)
2 + (𝑢𝜉) (𝑣𝜉) 𝑣𝑢+ 2𝑣2 (𝑢𝜉)𝑢− (𝑣𝜉)

2 𝑢2 − 7 (𝑣𝜉) 𝑣 𝑢
2−

− 6𝑣2𝑢2 − (𝑣𝜉,𝜉) 𝑣 𝑢
2 + 𝑢3 (𝑣𝜏 ) = 0. (17)
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Asymptotic forms of solutions to the system 𝑆(2)

Asymptotic forms of solutions to system 𝑆(2) (1)

Now consider the computation of the asymptotic forms of the solutions to the PDE
system 𝑆(2), in which Equations (16) and (17) depend on variables 𝜏 , 𝜉, 𝑢, 𝑣,
and cone of the problem is

𝐾[𝑆(2)] = {𝑝1, 𝑝2 ⩾ 0}
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Asymptotic forms of solutions to the system 𝑆(2)

Asymptotic forms of solutions to system 𝑆(2) (2)

The normal vector 𝑁 (3)
233(𝐸1𝑆) = [0, 0, 1, 1] defines the power-logarithmic transfor-

mation
𝑢 = 𝑟𝑣, 𝑠 = ln 𝑣, (18)

reducing the system 𝑆(2) to the system 𝑃 (2) with respect to the variables 𝜏 , 𝜉, 𝑟,
and 𝑠 with equations:

𝐸1𝑃 (2) ≡𝑟3 (𝑠𝜏 ) + 3𝑟2 (𝑠𝜉)
2 + 𝑟3 + 𝑟2 (𝑟𝜏 )− 5𝑟2 (𝑠𝜉)− 𝑟2 (𝑠𝜉,𝜉)+

+ 9𝑟 (𝑟𝜉)− 5𝑟 (𝑟𝜉)− 𝑟 (𝑟𝜉,𝜉) + 7 (𝑟𝜉)
2 = 0, (19)

𝐸2𝑃 (2) ≡𝑟3 (𝑠𝜏 ) + 5𝑟2 (𝑠𝜉)
2 − 5𝑟2 (𝑠𝜉)− 𝑟2 (𝑠𝜉,𝜉) + 13𝑟 (𝑟𝜉) (𝑠𝜉)− 6𝑟2+

+ 2𝑟 (𝑟𝜉) + 6 (𝑟𝜉)
2 = 0. (20)
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Asymptotic forms of solutions to the system 𝑆(2)

Asymptotic forms of solutions to system 𝑆(2) (3)

The cone of problem of the system 𝑃 (2) is 𝐾 = {𝑝1, 𝑝2, 𝑝4 ⩾ 0}.

The supports of Equations (19) and (20) of the system 𝑃 (2) are:

S(𝐸1𝑃 (2)) = {[−1, 0, 3, 0], [−1, 0, 3, 1], [0,−2, 2, 0], [0,−2, 2, 1],

[0,−2, 2, 2], [0,−1, 2, 0], [0,−1, 2, 1], [0, 0, 3, 0]},
S(𝐸2𝑃 (2)) = {[−1, 0, 3, 1], [0,−2, 2, 0], [0,−2, 2, 1], [0,−2, 2, 2],

[0,−1, 2, 0], [0,−1, 2, 1], [0, 0, 2, 0]}
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Asymptotic forms of solutions to the system 𝑆(2)

Asymptotic forms of solutions to system 𝑆(2) (4)

The normals to the three-dimensional faces of the convex polyhedron Γ(𝐸1𝑃 (2))
are

𝑁
(3)
485 = [0,−1, 2, 0], 𝑁

(3)
647 = [0, 1,−1, 0], 𝑁

(3)
701 = [−1, 0,−1, 0],

𝑁
(3)
707 = [0, 0, 0,−1], 𝑁

(3)
713 = [1, 1, 0, 1], 𝑁

(3)
727 = [1, 0, 0, 0].

The convex polyhedron Γ(𝐸2𝑃 (2)) is a three-dimensional simplex, i.e., the support
of the equation 𝐸2𝑃 (2) lies in the hyperplane with normals 𝑁

(3)
700 = [1,0,1,0] and

𝑁
(3)
701 = [−1,0,−1,0]

The normals with numbers 647, 700, 713, and 727 are suitable, and we denote the
corresponding systems by 𝑆(2,1), 𝑆(2,2), 𝑆(2,3), and 𝑆(2,4)
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Asymptotic forms of solutions to the system 𝑆(2)

Asymptotic forms of solutions to system 𝑆(2) (5)

The truncated system 𝑆(2,1) contains the trivial truncated equation 𝐸2𝑆(2,1) ≡
−6𝑟2 = 0, and the truncated system 𝑆(2,2) contains the trivial equation
𝐸1𝑆(2,2) ≡ 𝑟3 = 0. Therefore, we do not consider these systems below
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Asymptotic forms of solutions to the system 𝑆(2)

Analysis of truncated system 𝑆(2,3) (1)

The PDE system 𝑆(2,3) corresponding to the normal 𝑁 (3)
713 = [1, 1, 0, 1] consists of

equations:

𝐸1𝑆(2,3) ≡ (𝑠𝜏 ) 𝑟 + 3 (𝑠𝜉)
2 − 5𝑠𝜉 + 𝑟 = 0,

𝐸2𝑆(2,3) ≡ (𝑠𝜏 ) 𝑟 + 5 (𝑠𝜉)
2 − 5𝑠𝜉 − 6 = 0,

derived from the corresponding equations of the system 𝑃 (2) after reduction by the
multiplier 𝑟2.
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Asymptotic forms of solutions to the system 𝑆(2)

Analysis of truncated system 𝑆(2,3) (2)

Excluding the function 𝑟 from 𝐸2𝑆(2,3) and substituting it into 𝐸1𝑆(2,3), we obtain
the equation:

𝐸1𝑆(2,3)′ ≡ −2 (𝑠𝜉)
2 (𝑠𝜏 )− 5 (𝑠𝜉)

2 + 5𝑠𝜉 + 6𝑠𝜏 + 6 = 0, (21)

which we consider as one PDE. It can be solved by the method of separation of
variables, considering the required function 𝑠(𝜏, 𝜉) in the form of 𝑠(𝜏, 𝜉) = 𝑠1(𝜏) +
𝑠2(𝜉).
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Asymptotic forms of solutions to the system 𝑆(2)

Analysis of truncated system 𝑆(2,3) (3)

Then, after substitution, it turns out that Equation (21) can be considered as the
equation of an algebraic curve of genus 0 with respect to the derivatives (𝑠1)𝜏 and
(𝑠2)𝜉. This curve allows a rational parametrization

(𝑠1)𝜏 = −5𝐶2
1 − 5𝐶1 − 6

2(𝐶2
1 − 3)

, (𝑠2)𝜉 = 𝐶1,

where 𝐶1 is an arbitrary constant.
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Asymptotic forms of solutions to the system 𝑆(2)

Analysis of truncated system 𝑆(2,3) (4)

Hence, the solution of the system 𝑆(2,3) is the following:

Sol𝑆(2,3) :

{︃
𝑟 (𝜏, 𝜉) =2(𝐶2

1 − 3),

𝑠 (𝜏, 𝜉) =

(︀
5𝐶2

1 − 5𝐶1 − 6
)︀
𝜏

−2(𝐶2
1 − 3)

+ 𝐶1 + 𝐶2𝜉

}︃

which, according to (18), in the 𝑢, 𝑣 variables is written as

𝑢 = 2𝐶2

(︀
𝐶2
1 − 3

)︀
e𝑤, 𝑣 = 𝐶2e

𝑤,

where 𝑤 =

(︀
5𝐶2

1 − 5𝐶1 − 6
)︀

−2(𝐶2
1 − 3)

𝜏 + 𝐶1𝜉, and 𝐶2 is an arbitrary constant.
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Summary of results for the 𝑘–𝜀 model

Summary of results for the 𝑘–𝜀 model

In this section, we present the final results in the form of exact solutions and asymp-
totic forms of the solutions to the original system (6) in the initial functions 𝑘(𝑡, 𝑥)
and 𝜀(𝑡, 𝑥)
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Summary of results for the 𝑘–𝜀 model

Asymptotic forms of solutions to system 𝑆(1) (1)

For system 𝑆(1) four groups of asymptotics were found, two of which coincided with
each other

The asymptotic forms of solutions to the system 𝑆(1,1,3):

Asymp1𝑆(1,1,3) :

{︂
𝑘 =

√
𝑥𝐶2

𝑡2𝐶2
1

, 𝜀 =

√
𝑥𝐶2

𝑡3𝐶3
1

}︂
,

Asymp2𝑆(1,1,3) :

{︂
𝑘 =

𝐶2

𝑡2𝐶2
1

, 𝜀 =
𝐶2

𝑡3𝐶3
1

}︂
,

Asymp3𝑆(1,1,3) :

{︃
𝑘 =

𝑥1/3𝐶2

𝑡2𝐶2
1

, 𝜀 =
𝐶2

𝑡3𝐶3
1

}︃
.
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Summary of results for the 𝑘–𝜀 model

Asymptotic forms of solutions to system 𝑆(1) (2)

Asymptotic forms of solutions to the system 𝑆(1,1,4):

Asymp1,2𝑆(1,1,4) :

{︃
𝑘 =

𝑥2

𝐶1𝑎21,2𝑥
𝑏1,2𝑡2

, 𝜀 =
𝑥2

𝐶2
1𝑎

3
1,2𝑥

2𝑏1,2𝑡3

}︃
,

where 𝑎1,2 and 𝑏1,2 are given by

𝑎1,2 = −13±
√
145

5
, 𝑏1,2 =

5∓
√
145

10
.
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Summary of results for the 𝑘–𝜀 model

Asymptotic forms of solutions to system 𝑆(1) (3)

Asymptotic forms of solutions to the system 𝑆(1,2,1)

Asymp1,2𝑆(1,2,1) :

{︃
𝑘 =

𝑥2𝑏1,2
𝑡2𝐶2

1𝑥
2𝑎1,2

, 𝜀 =
𝑥2𝑏1,2

𝑡3𝐶
3𝑎1,2
1

}︃

where 𝑎1,2 and 𝑏1,2 are given by

𝑎1,2 =
12𝛾 − 17±

√
24𝛾 + 1

12𝛾 − 24
, 𝑏1,2 = 𝛾 ± 7

√
24𝛾 + 1

12
+

25

12
.

The asymptotic forms of solutions to the system 𝑆(1,2,2) coincide with the asymp-
totic forms of the system 𝑆(1,1,3)
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Summary of results for the 𝑘–𝜀 model

Asymptotic forms of solutions to system 𝑆(2)

The solution found for the truncated system 𝑆(2,3) gives the two-parameter asymp-
totic form

Asymp𝑆(2,3) :

{︃
𝑘 =

𝑥(2−𝐶1)𝑡(𝐶1−2)(𝐶1−3)/(2𝐶2
1−6)

4𝐶2

(︀
𝐶2
1 − 3

)︀2 ,

𝜀 =
𝑥2(1−𝐶1)𝑡(2𝐶1−3)(𝐶1−1)/(𝐶2

1−3)

8𝐶2
2

(︀
𝐶2
1 − 3

)︀3
}︃
,

defined for all parameter values 𝐶1 ̸= ±
√
3, 𝐶2 ̸= 0
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