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Kac theorem

The following question was popular at the beginning of the 20th century: what
is the probability that the zero of polynomial of degree m with real random

coe�cients is real? The answer of Mark Kac (M. Kac. On the average number of real roots of

a random algebraic equation. Bull. Amer. Math. Soc. 49 (1943), 314�320; Correction: Bull. Amer. Math. Soc.,

Volume 49, Number 12 (1943), 938�938) was

2

π

logm

m
.

The equality is asymptotic for large values of degree m. The polynomial
coe�cients are assumed to be independent normal random variables with zero
expectations. The answer seems to be reasonable: non zero but very small.

We consider the question, replacing the pair R ⊂ C by the pair K ⊂ KC, where
K is a compact Lie group and KC is the complexi�cation of K. Recall that

• KC is a complex connected Lie group, dimC(KC) = dim(K)
• the Lie algebra of KC is a complexi�cation of the Lie algebra of K
• K is a maximal compact subgroup of KC.
Complexi�cations of torus K = {eix1 , . . . , eixn}, unitary group U(n), specialy
unitary group, and ... are respectively (C \ 0)n, GL(n), SL(n), and ...
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Kac theorem for a circle

The simplest example of a compact Lie group is K = {eix} the unit circle in
C. Complexi�cation KC is a group non zero complex numbers C \ 0. By
de�nition, the real Laurent polynomial of degree m is a polynomial of the form

Pm(z) =
∑

0≤k≤m

akz
k + akz

−k

The restriction of Pm to the unit circle is a trigonometric polynomial. I.e.

Pm(eix) =
∑

k≤m,αk,βk∈R
αk cos(kx) + βk sin(kx).

The zeros in K we call the real zeros of a real Laurent polynomial Pm.

The expected number of real zeros of Pm (not asymptotically but)
exactly equals 2

√
m(m+ 1)/3.

(See in J. Angst, F. Dalmao and G. Poly. Proc. Amer. Math. Soc. (147:1), 2019, 205�214 or in arXiv:1706.01654).
So the probability of real zero equals

√
(m+ 1)/(3m), and converges

to 1/
√
3 as m→∞. Note that since

√
3 < 2, so the most of zeros are real!
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π-polynomials

Let π be a �nite dimensional representation of a group K. A �nite linear
combination of matrix elements π is said to be a π-polynomial on K. In doing
so, if the representation π is real then the coe�cients also are
assumed to be real.
In a more invariant way, a π-polynomial can be de�ned as a linear functional
on the space of representation operators.

Example from the Kac theorem for a circle

Let us consider the plane rotation with the angle kx as a representation
rk(e

ix) of T 1 in R2, and let

πm =
⊕
k≤m

rk

be a representation of T 1 in R2m. Then the space of πm-polynomials is the
same as the space of trigonometric polynomials of the form∑

k≤m,αk,βk∈R
αk cos(kx) + βk sin(kx)
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Real zeros of real πC-polynomials

Let KC be a complexi�cation of the compact group K. Recall that KC is a
complex connected Lie group, such that 1) the Lie algebra of KC is a
complexi�cation of the Lie algebra of K, and 2) K is a maximal compact
subgroup of KC. Any �nite dimensional representation π : K → AutE
uniquely extends to the holomorphic representation πC : KC → Aut(E ⊗R C).
So any π-polynomial on K uniquely extends to the πC-polynomial on KC. For
real π, all these extensions are called real πC-polynomials on KC. The zero
x ∈ K of real πC-polynomial is called the real zero of real πC-polynomial.

Example from the Kac theorem for a circle

Let as in the previous slide, πm =
⊕

k≤m rk, The πm-polynomials are∑
k≤m,αk,βk∈R αk cos(kx) + βk sin(kx). Then the space of real πC

m-polynomials
is the same as the space of Laurent polynomials of the form∑

0≤k≤m

akz
k + akz

−k
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The expected proportion of real roots

Let dimK = n, and let π be a real representation of K. For a system of n real
πC-polynomials, the ratio of the number of it's common real zeros to the
number of all common zeros in KC is said to be the proportion of real
roots. We also de�ne the expected proportion of real zeros real(π) for a
random system of real πC-polynomials. Our goal is the calculation of
asymptotics real(π) for growing representation π.

Example from the Kac theorem for a circle

Let πm be as in the previous slides. Then by Kac theorem for a circle, the
expected proportion real(πm) of real zeroes of real πC

m-polynomials equals√
(m+ 1)/(3m),

and so
lim
m→∞

real(πm) = lim
m→∞

√
(m+ 1)/(3m) = 1/

√
3
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Kac theorem for Laurent polynomials in many variables

I formulate the theorem without indicating its origin from compact torus
representations (B. Ya. Kazarnovskii. How many roots of a system of random trigonometric polynomials

are real? Sbornik:Math. (213:4), 2022, 27�37). This origin is analogous to the case of a
1-dimensional torus. Let Bm be a ball in Rn with the radius m and centre at
the origin. The Laurent polynomial of degree ≤ m

P (z) =
∑

k∈Zn∩Bm

akz
k,

is real if and only if ∀k : a−k = ak.

Let realm be the expected proportion of real roots (i.e. the roots from Tn) for
random systems of n real Laurent polynomials of degree ≤ m. Then

Theorem 1.

lim
m→∞

realm =

(
σn−1
σn

βn

)n
2

where

βn =

∫ 1

−1
x2(1− x2)

n−1
2 dx

and σk is a volume of the k-dimensional unit ball.
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The values of βn

For those who are interested in the values of the constants, we give a table of

βn =
∫ 1

−1 x
2(1− x2)n−1

2 dx for n ≤ 20.

n 1 2 3 4 5 6 7 8 9 10

βn
2
3

π
8

4
15

π
16

16
105

5π
128

32
315

7π
256

256
3465

21π
1024

n 11 12 13 14 15 16 17 18 19 20

βn
512
9009

33π
2048

4096
109395

429π
32768

2048
45045

715π
65536

65536
2078505

2431π
262144

131072
4849845

4199π
524288

Remark 1. If n = 1, then
√

σ0

σ1
β1 =

√
β1

2 = 1√
3
.

Remark 2. The expression x2(1− x2)n−1
2 dx is a so-called Chebyshev

di�erential binomial. In ("Sur l'integration des di�erentielles irrationnelles". Journal de

math. pure et appl., 1853, 18, p. 87�111) Chebyshev proved that xm(a+ bxn)pdx is
not integrated by elementary functions apart from the three cases of
integrability discovered by Euler. For odd n the above expression falls into the
�rst case, and for even n it belongs to the third case.
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Preliminaries from group theory

The Kac theorem deals with the growing sequence of spaces of polynomials of
increasing degree m. Instead we need some growing real representation πm of
the compact group K. To construct it, we use the following description of
irreducible real representations K.
• Tk, t and t∗ are respectively the maximal torus in K, the Lie algebra of Tk and the space

of linear functionals on t;
• Zk ⊂ t∗ is a lattice of di�erentials of torus characters;

• W ∗ is a Weyl group in the space t∗.

Proposition: There exists a mapping W : λ 7→ πλ of Zk to the set of
irreducible real representations K, such that
(1) W is surjective
(2) if W ∗(λ) =W ∗(µ) or W ∗(λ) =W ∗(−µ) then πλ = πµ, else πλ 6= πµ

Now we can de�ne the growing representation πm as

πm =
∑

λ∈Bm∩Zk
πλ,

where Bm ⊂ t∗ is the ball of the radius m and the centre at the origin.

Example: If K = T 1 then πm is the same as in Kac theorem for a unit circle.
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Kac theorem for simple Lie group

B. Kazarnovskii. How many roots ... ? https://arxiv.org/pdf/2208.14711.pdf

Here we suppose that the group K is simple, and use the coadjoint invariant
metric in g∗, which is dual to the Killing metric in g. We consider the
representation πm from the previous slide.

Theorem 2. Let α, ρ, and P (λ) be respectively the highest weight of the
adjoint representation µα of K, the half-sum of all positive roots, and∏
β∈R+(λ, β), where R+ is the set of positive roots. Then

lim
m→∞

real(πm) =
P 2(ρ)

(2π)n(n+ 2)n/2(α, α+ 2ρ)n/2

Remark 1. The Killing product (α, α+ 2ρ) equals the eigenvalue of the
Casimir operator in the space µα-polynomials

Remark 2. The representation πm contains irreducible components of high
multiplicity, but, by de�nition, the space of π-polynomials does not change
with increasing non-zero multiplicities of irreducible components π.
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A few words about the proof, I (Newton ellipsoid)

We de�ne the coadjointly-invariant ellipsoid Ell(π) in the space g∗ called the
Newton ellipsoid of representation π. If K is simple then Ell(π) is a ball of

some radius with the centre at the origin. Using (D.Akhiezer, B.Kazarnovskii. Average
number of zeros and mixed symplectic volume of Finsler sets. Geom. Funct. Anal., (28:6), 2018, 1517�1547), we
prove that the mean number of common zeros of a random system
f1, . . . , fn of n π-polynomials equals vol(Ell(π)).

Example. Let πm : T 1 → Aut(R2m) be, as in previous slides, a sum of
irreducible representations r1, . . . , rm, where rk(e

ix) is a plane rotation with
the angle kx. Then the πm-polynomials are the trigonometric polynomials of
the form Pm =

∑
k≤m ak cos(2πkx) + bk sin(2πkx), and the Newton ellipsoid is

a line segment with the ends

±
√

2

2m+ 1

∑
1≤k≤m

k2 = ±
√
m(m+ 1)

3
.

Hence the mean number of zeros of a random trigonometric polynomial Pm

equals 2
√

m(m+1)
3 .
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A few words about the proof, II (Newton body)

We de�ne the compact convex set in the space g∗ called the Newton body
N (π) of representation π. The set N (π)is coadjointly invariant, that is
together with any of its points contains its coadjoint orbit.
Using (B. Kazarnovskii. Newton polyhedra and the Bezout formula for matrix-valued functions of

�nite-dimensional representations. Funct. Anal. and Appl., (21:4), 1987, 319�321 (in Russian)), we prove
that the number of common zeros of almost all systems of n πC-polynomials
equals vol(N (π)). Hence, for the expected proportion of real roots we have

real(π) =
vol(Ell(π))

vol(N (π))

By the de�nition of the Newton body, for representation πm from Theorem 2,
the Newton body N (πm) asymptotically equals the ball of radius m.

Since the Newton ellipsoid Ell(πm) is also a ball, then to calculate the limit of
real(πm) for m→∞ it su�ces to �nd the asymptotics of the radius of the ball
Ell(πm) as m→∞.

This calculation is the last step of the proof.
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THANKS FOR ATTENTION !
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