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Abstract

Now there is a method, based on Power Geometry, that allows to find
asymptotic forms and asymptotic expansions of solutions to different kinds
of non-linear equations near their singularities. The method contains three
algorithms:

(1) Reducing equation to its normal form

(2) Separating truncated equations

(3) Power transformations of coordinates

Here we describe the method for the simplest case: a single algebraic
equation, and apply it to an algebraic variety, described by an algebraic
equation of order 12 in three variables. The variety was considered in
study of Einstein’s metrics and has several singular points and singular
curves. Near some of them we compute a local parametric expansion of
the variety.
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Introduction (1)

Here we propose a new method for solution of a polynomial equation

𝑓(𝑥1, . . . , 𝑥𝑛) = 0

near its singular point. In the example we show computations of the
method for a certain polynomial 𝑓 and 𝑛 = 3.

The method is used:
I The Newton polyhedron for separation of truncated

equations and
II Power transformations for simplification of these

equations.

Here the basic ideas of this method are explained for the simplest
case: a single algebraic equation.



Introduction (2)

In Section 2 we give a generalization of Implicit Function Theorem.
In Sections 3 and 4 we remind some constructions of Power Geome-
try [Bruno, 2000]. In Section 5 we explain a way of computation of
asymptotic parametric expansions of solutions. In Section 6 we show
a variety Ω and some its singularities. In Sections 7 and 8 we study
the variety Ω near its singular point 𝑃

(1)
3 = (0,0,3/4) and near its

singular line 𝒥 = {𝐴1 +𝐴2 + 1 = 0, 𝐴3 = 1/2} correspondingly.
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The Implicit Function Theorem (1)

Let 𝑋 = (𝑥1, . . . , 𝑥𝑛), 𝑄 = (𝑞1, . . . , 𝑞𝑛), then 𝑋𝑄 = 𝑥𝑞11 , . . . , 𝑥𝑞𝑛𝑛 ,
‖𝑄‖ =

∑︀𝑛
𝑗=1 𝑞𝑗 .

Theorem 1.

Let 𝑓(𝑋, 𝜀, 𝑇 ) = Σ𝑎𝑄,𝑟(𝑇 )𝑋
𝑄𝜀𝑟, where 0 ⩽ 𝑄 ∈ Z𝑛, 0 ⩽ 𝑟 ∈ Z,

the sum is finite and 𝑎𝑄,𝑟(𝑇 ) are some functions of 𝑇 = (𝑡1, . . . , 𝑡𝑚),
besides 𝑎00(𝑇 ) ≡ 0, 𝑎01(𝑇 ) ̸≡ 0. Then the solution to the equation
𝑓(𝑋, 𝜀, 𝑇 ) = 0 has the form

𝜀 = Σ𝑏𝑅(𝑇 )𝑋
𝑅, (1)

where 0 ⩽ 𝑅 ∈ Z𝑛, 0 < ‖𝑅‖, the coefficients 𝑏𝑅(𝑇 ) are functions
on 𝑇 that are polynomials from 𝑎𝑄,𝑟(𝑇 ) with ‖𝑄‖+𝑟 ⩽ ‖𝑅‖ divided
by 𝑎

2‖𝑅‖−1
01 . The expansion (1) is unique.



The Implicit Function Theorem (2)

This is a generalization of Theorem 1.1 of [Bruno, 2000, Ch. II]
on the implicit function when the linear part 𝑎01(𝑇 ) ̸≡ 0 is non
degenerate. In it, we must exclude the values of 𝑇 near the zeros of
the function 𝑎01(𝑇 ).

Let 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 or C𝑛, and 𝑓(𝑋) be a polynomial.
A point 𝑋 = 𝑋0, 𝑓(𝑋0) = 0 is called simple if in it vector
(𝜕𝑓/𝜕𝑥1, . . . , 𝜕𝑓/𝜕𝑥𝑛) ̸= 0.

Definition 1.

Let 𝜙 (𝑋) be some polynomial, 𝑋 = (𝑥1, . . . , 𝑥𝑛). A point 𝑋 = 𝑋0

of the set 𝜙 (𝑋) = 0 is called singular point of the 𝑘-order (SP), if
all partial derivatives of the polynomial 𝜙 (𝑋) for the 𝑥1, . . . , 𝑥𝑛 turn
into zero at this point, up to and including 𝑘-th order derivatives,
and at least one partial derivative of order 𝑘 + 1 is nonzero.
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The Newton polyhedron (1)

Let the point 𝑋0 = 0 be singular. Write the polynomial in the form
𝑓(𝑋) = Σ𝑎𝑄𝑋

𝑄, where 𝑎𝑄 = const ∈ R, or C. Let S(𝑓) = {𝑄 :
𝑎𝑄 ̸= 0} ⊂ R𝑛.

The set S is called the support of the polynomial 𝑓(𝑋). Let it
consist of points 𝑄1, . . . , 𝑄𝑘. The convex hull of the support S(𝑓)
is the set

Γ(𝑓) =

⎧⎨⎩𝑄 =

𝑘∑︁
𝑗=1

𝜇𝑗𝑄𝑗 , 𝜇𝑗 ⩾ 0,

𝑘∑︁
𝑗=1

𝜇𝑗 = 1

⎫⎬⎭ ,

which is called the Newton polyhedron.



The Newton polyhedron (2)

Its boundary 𝜕Γ(𝑓) consists of generalized faces Γ
(𝑑)
𝑗 , where 𝑑 is its

dimension of 0 ⩽ 𝑑 ⩽ 𝑛 − 1 and 𝑗 is its number. Numbering is
unique for all dimensions 𝑑.

Each (generalized) face Γ
(𝑑)
𝑗 corresponds to its:

∙ boundary subset S
(𝑑)
𝑗 = S ∩ Γ

(𝑑)
𝑗 ,

∙ truncated polynomial 𝑓 (𝑑)
𝑗 (𝑋) = Σ𝑎𝑄𝑋

𝑄 over 𝑄 ∈ S(𝑑)
𝑗 , and

∙ normal cone

U
(𝑑)
𝑗 =

{︁
𝑃 : ⟨𝑃,𝑄′⟩ = ⟨𝑃,𝑄′′⟩ > ⟨𝑃,𝑄′′′⟩, 𝑄′, 𝑄′′ ∈ S(𝑑)

𝑗 , 𝑄′′′ ∈ S∖S(𝑑)
𝑗

}︁
,

where 𝑃 = (𝑝1, . . . , 𝑝𝑛) ∈ R𝑛
* , the space R𝑛

* is conjugate (dual)
to the space R𝑛 and ⟨𝑃,𝑄⟩ = 𝑝1𝑞1 + . . . + 𝑝𝑛𝑞𝑛 is the scalar
product.



The Newton polyhedron (3)

At 𝑋 → 0 solutions to the full equation 𝑓(𝑋) = 0 tend to non-trivial
solutions of those truncated equations 𝑓

(𝑑)
𝑗 (𝑋) = 0 whose normal

cone U
(𝑑)
𝑗 intersects with the negative orthant 𝑃 ⩽ 0 in R𝑛

* .
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Power transformations (1)

Let ln𝑋 = (ln𝑥1, . . . , ln𝑥𝑛). The linear transformation of the log-
arithms of the coordinates

(ln 𝑦1, . . . , ln 𝑦𝑛)
def
= ln𝑌 = (ln𝑋)𝛼, (2)

where 𝛼 is a nondegenerate square 𝑛-matrix, is called power trans-
formation.

By the power transformation (2), the monomial 𝑋𝑄 tranforms into
the monomial 𝑌 𝑅, where 𝑅 = 𝑄(𝛼*)−1 and the asterisk indicates a
transposition.

A matrix 𝛼 is called unimodular if all its elements are integers and
det𝛼 = ±1. For an unimodular matrix 𝛼, its inverse 𝛼−1 and
transpose 𝛼* are also unimodular.



Power transformations (2)

Theorem 2.

For the face Γ
(𝑑)
𝑗 there exists a power transformation (2) with the

unimodular matrix 𝛼 which reduces the truncated sum 𝑓
(𝑑)
𝑗 (𝑋) to

the sum from 𝑑 coordinates, that is, 𝑓 (𝑑)
𝑗 (𝑋) = 𝑌 𝑆𝑔

(𝑑)
𝑗 (𝑌 ) where

𝑔
(𝑑)
𝑗 (𝑌 ) ≡ 𝑔

(𝑑)
𝑗 (𝑦1, . . . , 𝑦𝑑) is a polynomial. Here 𝑆 ∈ Z𝑛. The

additional coordinates 𝑦𝑑+1, . . . , 𝑦𝑛 are local (small).

The article [Bruno, Azimov, 2023] specifies an algorithm for com-
puting the unimodular matrix 𝛼 of Theorem 2.
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Parametric expansion of solutions (1)

Let Γ
(𝑑)
𝑗 be a face of the Newton polyhedron Γ(𝑓). Let the full

equation 𝑓(𝑋) = 0 is changed into the equation 𝑔(𝑌 ) = 0 after
the power transformation of Theorem 2. Thus 𝑔

(𝑑)
𝑗 (𝑦1, . . . , 𝑦𝑑) =

𝑔(𝑦1, . . . , 𝑦𝑑,0, . . . ,0).

Let the polynomial 𝑔(𝑑)𝑗 be the product of several irreducible polyno-
mials

𝑔
(𝑑)
𝑗 =

𝑚∏︁
𝑘=1

ℎ𝑙𝑘𝑘 (𝑦1, . . . , 𝑦𝑑), (3)

where 0 < 𝑙𝑘 ∈ Z. Let the polynomial ℎ𝑘 be one of them.

Three cases are possible:



Parametric expansion of solutions (2)

Case 1
The equation ℎ𝑘 = 0 has a polynomial solution 𝑦𝑑 =
𝜙(𝑦1, . . . , 𝑦𝑑−1). Then in the full polynomial 𝑔(𝑌 ) let us substi-
tute the coordinates 𝑦𝑑 = 𝜙 + 𝑧𝑑, for the resulting polynomial
ℎ(𝑦1, . . . , 𝑦𝑑−1, 𝑧𝑑, 𝑦𝑑+1 . . . , 𝑦𝑛) again construct the Newton poly-
hedron, separate the truncated polynomials, etc. Such calculations
were made in [Bruno, Batkhin, 2012] and were shown in Introduction
to [Bruno, 2000].

Case 2
The equation ℎ𝑘 = 0 has no polynomial solution, but has a
parametrization of solutions 𝑦𝑗 = 𝜙𝑗(𝑇 ), 𝑗 = 1, . . . , 𝑑, 𝑇 =
(𝑡1, . . . , 𝑡𝑑−1).



Parametric expansion of solutions (3)

Then in the full polynomial 𝑔(𝑌 ) we substitute the coordinates

𝑦𝑗 = 𝜙𝑖(𝑇 ) + 𝛽𝑗𝜀, 𝑗 = 1, . . . , 𝑑, (4)

where 𝛽𝑗 = const, Σ |𝛽𝑗 | ≠ 0, and from the full polynomial 𝑔(𝑌 ) we
get the polynomial

ℎ = Σ𝑎𝑄′′,𝑟(𝑇 )𝑌
′′𝑄′′

𝜀𝑟, (5)

where 𝑌 ′′ = (𝑦𝑑+1, . . . , 𝑦𝑛), 0 ⩽ 𝑄′′ = (𝑞𝑑+1, . . . , 𝑞𝑛) ∈ Z𝑛−𝑑,
0 ⩽ 𝑟 ∈ Z. Thus 𝑎00(𝑇 ) ≡ 0, 𝑎01(𝑇 ) =

∑︀𝑑
𝑗=1 𝛽𝑗𝜕𝑔

(𝑑)
𝑗 /𝜕𝑦𝑗(𝑇 ).



Parametric expansion of solutions (4)

If in the expansion (3) 𝑙𝑘 = 1, then 𝑎01 ̸≡ 0. By Theorem 1, all
solutions to the equation ℎ𝑘 = 0 have the form 𝜀 = Σ𝑏𝑄′′(𝑇 )𝑌 ′′𝑄′′

,
i.e., according to (4) the solutions to the equation 𝑔 = 0 have the
form 𝑦𝑗 = 𝜙𝑗(𝑇 )+𝛽𝑗Σ𝑏𝑄′′(𝑇 )𝑌 ′′𝑄′′

, 𝑗 = 1, . . . , 𝑑. Such calculations
were proposed in [Bruno, 2018].

If in (3) 𝑙𝑘 > 1, then in (5) 𝑎01(𝑇 ) ≡ 0 and for the polynomial (5)
from 𝑌 ′′, 𝜀 we construct the Newton polyhedron by support S(ℎ) ={︀
𝑄′′, 𝑟 : 𝑎𝑄′′,𝑟(𝑇 ) ̸≡ 0

}︀
, separate the truncations and so on.

Case 3
The equation ℎ𝑘 = 0 has neither a polynomial solution nor a para-
metric one. Then, using Hadamard’s polyhedron [Bruno, 2018], one
can compute a piecewise approximate parametric solution to the
equation ℎ𝑘 = 0 and look for an approximate parametric expan-
sion.



Parametric expansion of solutions (5)

Similarly, one can study the position of an algebraic manifold in
infinity.
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Variety Ω and its singularities (1)

The Ricci flows describe the evolution of Einstein’s metrics on a
variety and have 3 real parameters 𝑎1, 𝑎2, 𝑎3.

The Ricci flow has a degenerate stationary point iff its parameters
𝑎1, 𝑎2, 𝑎3 satisfies the equation

𝑄(𝑠1, 𝑠2, 𝑠3) ≡ (2𝑠1 + 4𝑠3 − 1)
(︀
64𝑠51 − 64𝑠41 + 8𝑠31 + 240𝑠21𝑠3 − 1536𝑠1𝑠

2
3−

−4096𝑠33 + 12𝑠21 − 240𝑠1𝑠3 + 768𝑠23 − 6𝑠1 + 60𝑠3 + 1
)︀
− 8𝑠1𝑠2(2𝑠1 + 4𝑠3 − 1)×

× (2𝑠1 − 32𝑠3 − 1)(10𝑠1 + 32𝑠3 − 5)− 16𝑠21𝑠
2
2

(︀
52𝑠21 + 640𝑠1𝑠3 + 1024𝑠23 − 52𝑠1−

−320𝑠3 + 13) + 64(2𝑠1 − 1)𝑠32(2𝑠1 − 32𝑠3 − 1) + 2048𝑠1(2𝑠1 − 1)𝑠42 = 0,

where 𝑠1, 𝑠2, 𝑠3 are elementary symmetric polynomials, equal respec-
tively to 𝑠1 = 𝑎1 + 𝑎2 + 𝑎3, 𝑠2 = 𝑎1𝑎2 + 𝑎1𝑎3 + 𝑎2𝑎3, 𝑠3 = 𝑎1𝑎2𝑎3.



Variety Ω and its singularities (2)

We denote the set of solutions to equation 𝑄(s) = 0 as variety
Ω [Nikonorov, 2016].

In [Bruno, Batkhin, 2015], for symmetry reasons, the coordinates
a = (𝑎1, 𝑎2, 𝑎3) were changed to the coordinates A = (𝐴1, 𝐴2, 𝐴3)
by a linear transformation⎛⎝𝑎1

𝑎2
𝑎3

⎞⎠ = 𝑀 ·

⎛⎝𝐴1

𝐴2

𝐴3

⎞⎠ , 𝑀 =

⎛⎝(1 +
√
3)/6 (1−

√
3)/6 1/3

(1−
√
3)/6 (1 +

√
3)/6 1/3

−1/3 −1/3 1/3

⎞⎠
In [Bruno, Batkhin, 2015] all SPs of the variety Ω in coordinates
A = (𝐴1, 𝐴2, 𝐴3) were found. There are five points of the third
order. Among them 𝑃

(3)
1 = (0,0,3/4). There are three second-order

points and three algebraic curves of SPs of the first order. Among
them is 𝒥 = {𝐴1 +𝐴2 + 1 = 0, 𝐴3 = 1/2}.



Variety Ω and its singularities (3)

Below we will consider the variety Ω in the neighborhood of point
𝑃

(3)
1 and curve 𝒥 . The methods proposed in [Bruno, 2018] and

described in Sections 2-5 are implemented.
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Structure of Ω near the SP 𝑃
(3)
1 (1)

Near the point 𝑃 (3)
1 let us introduce the local coordinates 𝑥1, 𝑥2, 𝑥3:

𝐴1 = 𝑥1, 𝐴2 = 𝑥2, 𝐴3 = 𝑥3 + 3/4 and from the polynomial
𝑅(A) we get a polynomial of degree 12 𝑆1(𝑥1, 𝑥2, 𝑥3) = 𝑅(A) =
𝑄(𝑠1, 𝑠2, 𝑠3). We calculate its support, the Newton polyhedron Γ1,
its faces Γ(2)

𝑗 and their external normals, using the PolyhedralSets
package of the Maple 2021 computer algebra system [Thompson,
2016]. We get 5 faces Γ

(2)
𝑗 . The graph of the polyhedron Γ1 is

shown in Fig. 1.



Structure of Ω near the SP 𝑃
(3)
1 (2)

Figure 1: Graph of the polyhedron Γ1.



Structure of Ω near the SP 𝑃
(3)
1 (3)

Each generalized face Γ
(𝑑)
𝑗 is presented by its number 𝑗 in an oval.

Numbers 𝑗 are given by the program automatically. The top line of
Fig. 1 contains the whole polyhedron Γ, the next line contains all the
two-dimensional faces Γ

(2)
𝑗 .

Below that, the edges Γ(1)
𝑗 , then the vertices Γ(0)

𝑗 , and at the bottom,

the empty set. A face Γ
(𝑑)
𝑗 is connected with a face Γ

(𝑑+1)
𝑘 by arrow,

iff Γ
(𝑑)
𝑗 ⊂ Γ

(𝑑+1)
𝑘 .

The external normals to its two-dimensional faces Γ
(2)
𝑗 are

𝑁71 = (−1,−1,−1/2), 𝑁143 = (1,1,1), 𝑁215 = (−1,0,0),

𝑁239 = (0,−1,0), 𝑁241 = (0,0,−1).



Structure of Ω near the SP 𝑃
(3)
1 (4)

The neighborhood of the point 𝑥1 = 𝑥2 = 𝑥3 = 0 is approximately
described by the truncated equation

𝑓1 ≡− 4096

81
81𝑥83 +

3

4
𝑥41 +

3

4
𝑥42 +

64

3
𝑥21𝑥

4
3 −

16

3
𝑥31𝑥

2
3+

+
64

3
𝑥22𝑥

4
3 −

16

3
𝑥32𝑥

2
3 +

3

2
𝑥21𝑥

2
2 + 16𝑥21𝑥2𝑥

2
3 + 16𝑥1𝑥

2
2𝑥

2
3 = 0,

corresponding to the face Γ
(2)
𝑗 of number 𝑗 = 71 with the normal

𝑁71 = (−2,−2,−1), which has all coordinates negative.

According to the article [Bruno, Azimov, 2023], we find the unimod-

ular matrix 𝛼 =

⎛⎝ 1 0 0
0 1 0
−2 −2 1

⎞⎠ such that 𝑁71𝛼 = (0,0,−1).



Structure of Ω near the SP 𝑃
(3)
1 (5)

Consequently, we have to do the power transformation

(ln 𝑦1, ln 𝑦2, ln 𝑦3) = (ln𝑥1, ln𝑥2, ln𝑥3) · 𝛼,

i.e.
(ln𝑥1, ln𝑥2, ln𝑥3) = (ln 𝑦1, ln 𝑦2, ln 𝑦3) · 𝛼−1

Since 𝛼−1 =

⎛⎝1 0 0
0 1 0
2 2 1

⎞⎠, then

𝑥1 = 𝑦1𝑦
2
3, 𝑥2 = 𝑦2𝑦

2
3, 𝑥3 = 𝑦3. (6)



Structure of Ω near the SP 𝑃
(3)
1 (6)

In this case, 𝑓1(𝑥1, 𝑥2, 𝑥3) = 𝑦83 · 𝐹1(𝑦1, 𝑦2);

𝐹1(𝑦1, 𝑦2) = −4096

81
+

3

4
𝑦41 +

3

4
𝑦42 +

64

3
𝑦21 −

16

3
𝑦31 +

64

3
𝑦22−

− 16

3
𝑦32 +

3

2
𝑦21𝑦

2
2 + 16𝑦21𝑦2 + 16𝑦1𝑦

2
2.

(7)

According to the algcurves package from the computer algebra
system Maple, the curve 𝐹1(𝑦1, 𝑦2) = 0 has genus 0, parametrization
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𝑦1 = 𝑏1(𝑡) =

− 8(21434756829626557083983𝑡4 + 1417074727891594177202560𝑡3+

+ 31706038193372580461588706𝑡2 + 335726200061958227448792184𝑡+

+ 8333103427347345384379)/𝛿,

𝑦2 = 𝑏2(𝑡) =

− 56(3053430900966931440569𝑡4 + 198407502991736938316080𝑡3+

+ 3883533208553253313258158𝑡2 + 9193559104820491279715848𝑡−
− 262262822183337506658650323)/𝛿,

𝛿 = 9
(︀
85576987369𝑡2 + 3099727166140𝑡+ 37630556816821

)︀2
,

(8)

and the plot shown in Fig. 2.
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Figure 2: Plot of the curve 𝐹1(𝑦1, 𝑦2) = 0.
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This is a curvilinear triangle with vertices
(𝑦1, 𝑦2) = −8

3(1,1), −
8
3

(︁
−1+

√
3

2 ,
√
3−1
2

)︁
, −8

3

(︁√
3−1
2 ,−

√
3+1
2

)︁
.

Now, to describe the structure of the variety Ω near the point
𝑃

(3)
1 , we substitute power transformation (6) into the polynomial

𝑆1(𝑥1, 𝑥2, 𝑥3) and get the polynomial 𝑇 (𝑦1, 𝑦2, 𝑦3) = 𝑆1/𝑦
8
3. It de-

composes into the sum

𝑇 (𝑦1, 𝑦2, 𝑦3) =

𝑚∑︁
𝑘=0

𝑇𝑘(𝑦1, 𝑦2)𝑦
𝑘
3

with 𝑇0(𝑦1, 𝑦2) = 𝐹1(𝑦1, 𝑦2) and using the command
coeff(T,y[k],m) in CAS Maple selecting monomials con-
taining factor 𝑥𝑚𝑘 , for 𝑘 = 3 and 𝑚 = 1 we obtain
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𝑇1
def
= 𝐺(𝑦1, 𝑦2) = 8𝑦41 + 16𝑦21𝑦

2
2 + 8𝑦42 −

1216

27
𝑦31 +

1216

9
𝑦21𝑦2+

+
1216

9
𝑦1𝑦

2
2 −

1216

27
𝑦32 +

3584

27
𝑦21 +

3584

27
𝑦22 −

65536

729
(9)

In the polynomials 𝑇𝑘(𝑦1, 𝑦2) we do the substitution

𝑦1 = 𝑏1(𝑡) + 𝜀, 𝑦2 = 𝑏2(𝑡) + 𝜀. (10)
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We obtain a polynomial 𝑢(𝜀, 𝑦3) = 𝑇 (𝑦1, 𝑦2, 𝑦3) with coefficients
depending on 𝑡 through 𝑏1(𝑡) and 𝑏2(𝑡). In this polynomial

𝑢(𝜀, 𝑦3) =

𝑚∑︁
𝑘=0

𝑇𝑘(𝑏1 + 𝜀, 𝑏2 + 𝜀)𝑦𝑘3 =
∑︁
𝑝,𝑞⩾0

𝑢𝑝𝑞𝜀
𝑝𝑦𝑞3,

where 𝑢00 = 𝐹1(𝑏1(𝑡), 𝑏2(𝑡)) of (7) so 𝑢00 ≡ 0,

𝑢10 =
𝜕𝐹1(𝑦1, 𝑦2)

𝜕𝑦1
+

𝜕𝐹1(𝑦1, 𝑦2)

𝜕𝑦2
=

3𝑦31 + 128/3𝑦1 + 3𝑦1𝑦
2
2 + 3𝑦21𝑦2 + 64𝑦1𝑦2 + 3𝑦32 + 128/3𝑦2

def
= 𝐻(𝑦1, 𝑦2),

(11)
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and in general

𝑢𝑝𝑞 =
∑︁

𝑝1+𝑝2=𝑝⩾1

1

𝑝1!𝑝2!
· 𝜕𝑝𝑇𝑞

𝜕𝑦𝑝11 · 𝜕𝑦𝑝22
(12)

when 𝑝1, 𝑝2 ⩾ 0, 𝑝 ⩾ 1, 𝑦𝑖 = 𝑏𝑖(𝑡), 𝑖 = 1,2, according to (8) and
substitution (10).
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Now according to (9) and (11)

𝑢10(𝑡) = 𝐻(𝑏1(𝑡), 𝑏2(𝑡)) =

− 32768(254517259607𝑡2 + 8638940893220𝑡+ 63662194408079)3×
× (23525𝑡+ 3508186)4/(243𝛾5),

𝑢01(𝑡) = 𝐺(𝑏1(𝑡), 𝑏2(𝑡)) =

5242880(23525𝑡+ 3508186)4×
× (254517259607𝑡2 + 8638940893220𝑡+ 63662194408079)4/

/(19683𝛾6),

𝛾 = 85576987369𝑡2 + 3099727166140𝑡+ 37630556816821.
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The functions 𝑢10(𝑡) and 𝑢01(𝑡) each have three multiple roots

𝑡1 = −3508186

23525
, 𝑡2,3 = −4319470446610

254517259607
± 904562081493

√
3

254517259607
.

(13)

These values correspond to the vertices of the curvilinear triangle of
Fig. 2
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According to Theorem 1 on the implicit function, the equation
𝑢(𝜀, 𝑦3) = 0 has the solution as the power series over 𝑦3

𝜀 =

∞∑︁
𝑘=1

𝑐𝑘(𝑡) · 𝑦𝑘3 , (14)

where 𝑐𝑘(𝑡) are rational functions that are expressed via the coeffi-
cients 𝑢𝑝𝑞(𝑡), which in turn are expressed via 𝑏1(𝑡) and 𝑏2(𝑡) accord-
ing to (12).
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This decomposition is valid for all values of 𝑡, except maybe the roots
(13). In particular,

𝑐1(𝑡) = −𝑢01
𝑢10

= −𝐺

𝐻
=

160(254517259607𝑡2 + 8638940893220𝑡+ 63662194408079)

81(85576987369𝑡2 + 3099727166140𝑡+ 37630556816821)
,

where the denominator has no real roots. According to (14) approx-
imate 𝑟 ≈ 𝑐1(𝑡)𝑦3.



Structure of Ω near the SP 𝑃
(3)
1 (17)

Let us return to the initial coordinates, which for small |𝑦3| on variety
Ω are approximated by

𝑥1 = (𝑏1(𝑡) + 𝑐1(𝑡)𝑦3)𝑦
2
3, 𝑥2 = (𝑏2(𝑡) + 𝑐1(𝑡)𝑦3)𝑦

2
3. (15)

If 𝑦3 = −1/50, i.e., 𝐴3 = 73/100, the curve (15) is shown in Fig. 3.

It is similar to the curve of Fig. 11 in [Bruno, Batkhin, 2015] with
𝐴3 = 5/8 near the origin.
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Figure 3: Curve (15) for 𝑦3 = −1/50.
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If 𝑦3 = 1/20, i.e., 𝐴3 = 4/5, it is shown in Fig. 4 and is similar to
the curve of Fig. 9 in [Bruno, Batkhin, 2015] with 𝐴3 = 1 near the
origin.

Figure 4: Curve (15) for 𝑦3 = 1/20
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Figure 5: Fig. 9 in [Bruno,
Batkhin, 2015]
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Structure of Ω near the curve 𝒥 of SP (1)

On the curve 𝒥 and near it, let us introduce the local coordinates
𝑥1, 𝑥2, 𝑥3 :

𝐴1 = 𝑥1 − 𝑥2 −
1

2
, 𝐴2 = 𝑥1 + 𝑥2 −

1

2
, 𝐴3 =

1

2
+ 𝑥3.

On the line 𝒥 the coordinates 𝑥1 = 𝑥3 = 0 and 𝑥2 is arbitrary.
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From the polynomial 𝑅 (A) we get a polynomial of degree 12

𝑆3 (𝑥1, 𝑥2, 𝑥3) = 𝑅 (A) = 𝑄 (𝑠1, 𝑠2, 𝑠3) ,

we compute its support, the Newton polyhedron Γ3, its faces Γ
(2)
𝑗

and their external normals, using the PolyhedralSets package of
the CAS Maple 2021. We obtain 7 faces Γ

(2)
𝑗 . The graph of the

polyhedron Γ3 is shown in Fig. 6.
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Figure 6: The graph of the polyhedron Γ3.
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The external normals of its two-dimensional faces are 𝑁641 =
(−1,0,−1), 𝑁683 = (−1,−1,−2), 𝑁1241 = (1,1,1), 𝑁1699 =
(0,0,−1), 𝑁1941 = (−1,0,0), 𝑁2003 = (0,−1,0), 𝑁2117 = (0,1,0).

The neighborhood of the line 𝑥1 = 𝑥3 = 0 is approximately described
by the zeros of the truncated polynomial

𝑓1 = −1024

81
𝑥2
1𝑥

4
2−

16384

729
𝑥8
2𝑥

2
1+

8192

729
𝑥8
2𝑥

2
3+

8192

243
𝑥2
1𝑥

6
2+

1664

81
𝑥4
2𝑥

2
3−

− 16

3
𝑥2
2𝑥

2
3 −

6400

243
𝑥6
2𝑥

2
3 +

4096

243
𝑥1𝑥

6
2𝑥3 −

8192

729
𝑥8
2𝑥1𝑥3 −

512

81
𝑥1𝑥

4
2𝑥3,

corresponding to face 641 with normal 𝑁641 = (−1,0,−1), which
has two coordinates negative.
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According to the paper [Bruno, Azimov, 2023] we find the unimodular
matrix

𝛼 =

⎛⎝ 1 0 0
0 1 0
−1 0 1

⎞⎠
such that

𝑁𝛼 = (0,0,−1) .

Hence we have to perform the power transformation

(ln 𝑦1, ln 𝑦2, ln 𝑦3) = (ln𝑥1, ln𝑥2, ln𝑥3) · 𝛼,

i.e.
(ln𝑥1, ln𝑥2, ln𝑥3) = (ln 𝑦1, ln 𝑦2, ln 𝑦3) · 𝛼−1.
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Since 𝛼−1 =

⎛⎝1 0 0
0 1 0
1 0 1

⎞⎠, then

𝑥1 = 𝑦1𝑦3, 𝑥2 = 𝑦2, 𝑥3 = 𝑦3. (16)

In this case

𝑓1 (𝑥1, 𝑥2, 𝑥3) = 𝑦23 · 𝐹3 (𝑦1, 𝑦2) ;

𝐹3 (𝑦1, 𝑦2) = −
16𝑦22

(︀
4𝑦22 − 3

)︀2 (︀
64𝑦22𝑦

2
1 + 32𝑦1𝑦

2
2 − 32𝑦22 + 27

)︀
729

.
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The equation 𝐹3 (𝑦1, 𝑦2) = 0 has three solutions:

1 𝑦2 = 0. It corresponds to the point 𝑃 (2)
3 .

2 𝑦2 = ±
√
3/2. It corresponds to points 𝑃

(3)
4 and 𝑃

(3)
5 , which

we will study separately.
3 Curve

Φ (𝑦1, 𝑦2)
def
= 6422𝑦

2
1 + 32𝑦1𝑦

2
2 − 32𝑦22 + 27 = 0.
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According to the procedure genus from the package algcurves pro-
gram from the CAS Maple, the curve Φ (𝑦1, 𝑦2) = 0 has genus 0,
parameterization

𝑦1 = 𝑏1 (𝑡)
def
=

5𝑡2 + 2𝑡− 1

19𝑡2 + 22𝑡+ 7
, 𝑦2 = 𝑏2 (𝑡)

def
= −19𝑡2 + 22𝑡+ 7

16𝑡2 + 24𝑡+ 8
,

(17)
and the graph shown in Fig. 7.
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Figure 7: The curve Φ (𝑦1, 𝑦2) = 0.
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This curve is located in the band −1 < 𝑦1 < 1
2 , it is symmetric

relative to the axis 𝑦2 = 0 and the vertical 𝑦1 = −1
4 . When 𝑦1 = −1

4
,

on it 𝑦2 = ±
√
3

2
= ±0.8660254, 𝑡 = (−5 ∓ 2

√
3)/13 (i.e. on the

curve 𝑡 = −0.651084 and 𝑡 = −0.118146). In this |𝑦2| ⩾
√
3/2. At

𝑦1 = −1, 𝑡 = −1/2, at 𝑦1 = 1/2, 𝑡 = −1, and 𝑦2 = ±∞.

Now to describe the structure of variety Ω near the line 𝒥 we
substitute (16) into the polynomial 𝑆3(x) and get the polynomial
𝑇 (𝑦1, 𝑦2, 𝑦3). It splits into the sum

𝑇 (𝑦1, 𝑦2, 𝑦3) = 𝑦23

𝑚∑︁
𝑘=0

𝑇𝑘(𝑦1, 𝑦2)𝑦
𝑘
3

with 𝑇0 (𝑦1, 𝑦2) = 𝐹3 (𝑦1, 𝑦2) and using the coeff command we get
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𝑇1
def
= 𝐺 (𝑦1, 𝑦2) =

16384

243
𝑦31𝑦

4
2−

32768

243
𝑦62𝑦

3
1+

131072

2187
𝑦31𝑦

8
2−

11776

81
𝑦1𝑦

4
2+

+
8192

81
𝑦1𝑦

6
2 +

1280

27
𝑦22𝑦

2
1 +

65536

729
𝑦82𝑦

2
1 +

1408

27
𝑦1𝑦

2
2 −

4096

81
𝑦21𝑦

6
2−

− 2048

27
𝑦21𝑦

4
2 + 16 +

4096

243
𝑦62 −

65536

2187
𝑦82 +

13312

243
𝑦42 . (18)
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In the polynomials 𝑇𝑘 (𝑦1, 𝑦2) we substitute

𝑦1 = 𝑏1 (𝑡) + 𝜀, 𝑦2 = 𝑏2 (𝑡) . (19)

We get a polynomial 𝑢 (𝜀, 𝑦3) = 𝑇 (𝑦1, 𝑦2, 𝑦3) /𝑦
2
3 with coefficients

depending on 𝑡 through 𝑏1 (𝑡) and 𝑏2 (𝑡). In this polynomial

𝑢 (𝜀, 𝑦3) =

𝑚∑︁
𝑘=0

𝑇𝑘(𝑏1 + 𝜀, 𝑏2)𝑦
𝑘
3 =

∑︁
𝑝,𝑞≥0

𝑢𝑝𝑞𝜀
𝑝𝑦𝑞3,

where 𝑢00 = 𝐹3 (𝑏1 (𝑡) , 𝑏2 (𝑡)) from (19)
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So 𝑢00 = 0,

𝑢10 =
𝜕𝐹 (𝑦1, 𝑦2)

𝜕𝑦1
= −

512𝑦42
(︀
4𝑦22 − 3

)︀2
(4𝑦1 + 1)

729

def
= 𝐻 (𝑦1, 𝑦2)

(20)
when 𝑦𝑖 = 𝑏𝑖 (𝑡), 𝑖 = 1,2, and in general

𝑢𝑝𝑞 =
1

𝑝!
· 𝜕

𝑝𝑇𝑞

𝜕𝑦𝑝1
, when 𝑦𝑖 = 𝑏𝑖 (𝑡) , 𝑖 = 1,2, (21)

according to (17).



Structure of Ω near the curve 𝒥 of SP (14)

Now, according to (20) and (18)

𝑢10 (𝑡) =𝐻 (𝑏1 (𝑡) , 𝑏2 (𝑡)) = −
(︀
19𝑡2 + 22𝑡+ 7

)︀3 (︀
13𝑡2 + 10𝑡+ 1

)︀5
497664𝜁8

,

𝑢01 (𝑡) =𝐺 (𝑏1 (𝑡) , 𝑏2 (𝑡)) =
𝜂

1728𝜁4
,

𝜁 =(𝑡+ 1) (2𝑡+ 1) ,

𝜂 =2224717𝑡8 + 12017960𝑡7 + 28029436𝑡6 + 37008760𝑡5+

+ 30350558𝑡4 + 15868120𝑡3 + 5174044𝑡2 + 963080𝑡+ 78397
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By generalized Theorem 1 on the implicit function, the equation
𝑢 (𝜀, 𝑦3) = 0 has a solution as a power series over 𝑦3

𝜀 =

∞∑︁
𝑘=1

𝑐𝑘 (𝑡) · 𝑦𝑘3 , (22)

where 𝑐𝑘 (𝑡) are rational functions that are expressed through the
coefficients 𝑢𝑝𝑞 (𝑡) , which in turn are expressed through 𝑏1(𝑡) and
𝑏2 (𝑡) according to (21). This expansion is valid for all values of 𝑡,
except maybe the roots of the function 𝐻(𝑡) . They correspond to
points 𝑦1 = −1/4, 𝑦2 = ±

√
3/2.
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Therefore, we have to remove them together with their neighbor-
hoods. In particular,

𝑐1 (𝑡) = −
(︂
𝑢01
𝑢10

)︂
= −𝐺

𝐻
=

(︀
288𝜂𝜁4

)︀
/
(︀(︀
19𝑡2 + 22𝑡+ 7

)︀
×

×
(︀
6997𝑡6 + 24846𝑡5 + 37479𝑡4 + 30484𝑡3 + 13971𝑡2 + 3390𝑡+ 337

)︀
×

×
(︀
13𝑡2 + 10𝑡+ 1

)︀4)︁
,

where the denominator has 2 real roots 𝑡1,2 =
(︀
−5∓ 2

√
3
)︀
/13.

According to (22) approximate 𝜀 ≈ 𝑐1 (𝑡) 𝑦3.
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Let us return to the original coordinates, which for small |𝑦3| on the
variety Ω are approximated by

𝑥1 = (𝑏1 (𝑡) + 𝑐1 (𝑡) 𝑦3) 𝑦3, 𝑥2 = 𝑏2 (𝑡) , 𝑥3 = 𝑦3, (23)

in which case

𝐴1 = 𝑥1 − 𝑥2 −
1

2
, 𝐴2 = 𝑥1 + 𝑥2 −

1

2
, 𝐴3 =

1

2
+ 𝑦3. (24)
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Figure 8: Curves (23), (24) at 𝑦3 = 1/20.
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Fig. 8 at 𝑦3 = 1/20 (i.e., 𝐴3 = 11/20 ) shows the upper and lower
sections of the curve (23), (24) for 1.4 < |𝑏2(𝑡)| < 3. The sections
where |𝑏2(𝑡)| < 1.4 are discarded, because they are affected by sin-
gularities of the SPs 𝑃

(3)
4 and 𝑃

(3)
5 . We see that these curves are

like parallel line segments and almost coincide. In the correspond-
ing 𝐴3 = 0.505 Fig. 12 in [Bruno, Batkhin, 2015] similar branches
merge.

Fig. 9 shows the upper and lower sections of the curve (23), (24)
at 𝑦3 = −1/20 (i.e., 𝐴3 = 9/20). Here the distance between the
branches is larger, which corresponds to Fig. 8 in [Bruno, Batkhin,
2015], with 𝐴3 = 0.45, where these branches do not merge.



Structure of Ω near the curve 𝒥 of SP (20)

Figure 9: Curves (23), (24) at 𝑦3 = −1/20.
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Thanks for your attention!
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