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Abstract. Now there is a method, based on Power Geometry, that allows
to find asymptotic forms and asymptotic expansions of solutions to different
kinds of non-linear equations near their singularities. The method contains
three algorithms: (1) Reducing equation to its normal form, (2) Separating
truncated equations, (3) Power transformations of coordinates. Here we de-
scribe the method for the simplest case: a single algebraic equation, and apply
it to an algebraic variety, described by an algebraic equation of order 12 in
three variables. The variety was considered in study of Einstein’s metrics and
has several singular points and singular curves. Near some of them we compute
a local parametric expansion of the variety.

1. Introduction
Here we propose a new method for solution of a polynomial equation

f(x1, . . . , xn) = 0

near its singular point. In the example we show computations of the method for a
certain polynomial f and n = 3. The method is used:

I: The Newton polyhedron for separation of truncated equations and
II: Power transformations for simplification of these equations.

Here the basic ideas of this method are explained for the simplest case: a
single algebraic equation. In Section 2 we give a generalization of Implicit Function
Theorem. In Sections 3 and 4 we remind some constructions of Power Geometry [1].
In Section 5 we explain a way of computation of asymptotic parametric expansions
of solutions. In Section 6 we show a variety Ω and some its singularities.

2. The implicit function theorem
Let X = (x1, . . . , xn), Q = (q1, . . . , qn), then XQ = xq1

1 , . . . , xqn
n , ∥Q∥ =

∑n
j=1 qj .
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Theorem 1. Let
f(X, ε, T ) = ΣaQ,r(T )X

Qεr,

where 0 ≤ Q ∈ Zn, 0 ≤ r ∈ Z, the sum is finite and aQ,r(T ) are some functions
of T = (t1, . . . , tm), besides a00(T ) ≡ 0, a01(T ) ̸≡ 0. Then the solution to the
equation f(X, ε, T ) = 0 has the form

ε = ΣbR(T )X
R, (1)

where 0 ≤ R ∈ Zn, 0 < ∥R∥, the coefficients bR(T ) are functions on T that are
polynomials from aQ,r(T ) with ∥Q∥ + r ≤ ∥R∥ divided by a

2∥R∥−1
01 . The expan-

sion (1) is unique.

This is a generalization of Theorem 1.1 of [1, Ch. II] on the implicit function
and simultaneously a theorem on reducing the algebraic equation f = 0 to its
normal form (1) when the linear part a01(T ) ̸≡ 0 is non degenerate. In it, we must
exclude the values of T near the zeros of the function a01(T ).

Let X = (x1, . . . , xn) ∈ Rn or Cn, and f(X) be a polynomial. A point
X = X0, f(X0) = 0 is called simple if in it vector (∂f/∂x1, . . . , ∂f/∂xn) ̸= 0.

Definition 1. Let φ (X) be some polynomial, X = (x1, . . . , xn). A point X = X0

of the set φ (X) = 0 is called singular point of the k-order, if all partial derivatives
of the polynomial φ (X) for the x1, . . . , xn turn into zero at this point, up to and
including k-th order derivatives, and at least one partial derivative of order k + 1
is nonzero.

3. The Newton polyhedron
Let the point X0 = 0 be singular. Write the polynomial in the form f(X) =
ΣaQX

Q, where aQ = const ∈ R, or C. Let S(f) = {Q : aQ ̸= 0} ⊂ Rn.
The set S is called the support of the polynomial f(X). Let it consist of

points Q1, . . . , Qk. The convex hull of the support S(f) is the set

Γ(f) =

Q =

k∑
j=1

µjQj , µj ≥ 0,

k∑
j=1

µj = 1

 ,

which is called the Newton polyhedron.
Its boundary ∂Γ(f) consists of generalized faces Γ(d)

j , where d is its dimension
of 0 ≤ d ≤ n− 1 and j is its number. Numbering is unique for all dimensions d.

Each (generalized) face Γ
(d)
j corresponds to its:

• boundary subset S
(d)
j = S ∩ Γ

(d)
j ,

• truncated polynomial f̂ (d)
j (X) = ΣaQX

Q over Q ∈ S(d)
j , and

• normal cone
U(d)

j =
{
P : ⟨P,Q′⟩ = ⟨P,Q′′⟩ > ⟨P,Q′′′⟩, Q′, Q′′ ∈ S(d)

j , Q′′′ ∈ S\S(d)
j

}
,

where P = (p1, . . . , pn) ∈ Rn
∗ , the space Rn

∗ is conjugate (dual) to the space
Rn and ⟨P,Q⟩ = p1q1 + . . .+ pnqn is the scalar product.
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At X → 0 solutions to the full equation f(X) = 0 tend to non-trivial solutions
of those truncated equations f̂

(d)
j (X) = 0 whose normal cone U

(d)
j intersects with

the negative orthant P ≤ 0 in Rn
∗ .

4. Power transformations
Let lnX = (lnx1, . . . , lnxn). The linear transformation of the logarithms of the
coordinates

(ln y1, . . . , ln yn)
def
= lnY = (lnX)α, (2)

where α is a nondegenerate square n-matrix, is called power transformation.
By the power transformation (2), the monomial XQ tranforms into the mono-

mial Y R, where R = Q(α∗)−1 and the asterisk indicates a transposition.
A matrix α is called unimodular if all its elements are integers and detα = ±1.

For an unimodular matrix α, its inverse α−1 and transpose α∗ are also unimodular.

Theorem 2. For the face Γ
(d)
j there exists a power transformation (2) with the

unimodular matrix α which reduces the truncated sum f̂
(d)
j (X) to the sum from

d coordinates, that is, f̂ (d)
j (X) = Y S ĝ

(d)
j (Y ) where ĝ

(d)
j (Y ) ≡ ĝ

(d)
j (y1, . . . , yd) is a

polynomial. Here S ∈ Zn. The additional coordinates yd+1, . . . , yn are local (small).

The article [2] specifies an algorithm for computing the unimodular matrix
α of Theorem 2.

5. Parametric expansion of solutions

Let Γ(d)
j be a face of the Newton polyhedron Γ(f). Let the full equation f(X) = 0 is

changed into the equation g(Y ) = 0 after the power transformation of Theorem 2.
Thus ĝ

(d)
j (y1, . . . , yd) = g(y1, . . . , yd, 0, . . . , 0).

Let the polynomial ĝ(d)j be the product of several irreducible polynomials

ĝ
(d)
j =

m∏
k=1

hlk
k (y1, . . . , yd), (3)

where 0 < lk ∈ Z. Let the polynomial hk be one of them. Three cases are possible:
Case 1. The equation hk = 0 has a polynomial solution yd = φ(y1, . . . , yd−1). Then
in the full polynomial g(Y ) let us substitute the coordinates yd = φ+ zd, for the
resulting polynomial h(y1, . . . , yd−1, zd, yd+1 . . . , yn) again construct the Newton
polyhedron, separate the truncated polynomials, etc. Such calculations were made
in [3] and were shown in Introduction to [1].

Case 2. The equation hk = 0 has no polynomial solution, but has a parametrization
of solutions yj = φj(T ), j = 1, . . . , d, T = (t1, . . . , td−1).
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Then in the full polynomial g(Y ) we substitute the coordinates

yj = φi(T ) + βjε, j = 1, . . . , d, (4)

where βj = const, Σ |βj | ̸= 0, and from the full polynomial g(Y ) we get the
polynomial

h = ΣaQ′′,r(T )Y
′′Q′′

εr, (5)
where Y ′′ = (yd+1, . . . , yn), 0 ≤ Q′′ = (qd+1, . . . , qn) ∈ Zn−d, 0 ≤ r ∈ Z. Thus
a00(T ) ≡ 0, a01(T ) =

∑d
j=1 βj∂ĝ

(d)
j /∂yj(T ).

If in the expansion (3) lk = 1, then a01 ̸≡ 0. By Theorem 1, all solutions to
the equation h = 0 have the form ε = ΣbQ′′(T )Y ′′Q′′

, i.e., according to (4) the
solutions to the equation g = 0 have the form yj = φj(T ) + βjΣbQ′′(T )Y ′′Q′′

,
j = 1, . . . , d. Such calculations were proposed in [4].

If in (3) lk > 1, then in (5) a01(T ) ≡ 0 and for the polynomial (5) from Y ′′, ε
we construct the Newton polyhedron by support S(h) = {Q′′, r : aQ′′,r(T ) ̸≡ 0},
separate the truncations and so on.
Case 3. The equation hk = 0 has neither a polynomial solution nor a paramet-
ric one. Then, using Hadamard’s polyhedron [4], one can compute a piecewise
approximate parametric solution to the equation hk = 0 and look for an approxi-
mate parametric expansion.

Similarly, one can study the position of an algebraic manifold in infinity.

6. Variety Ω and its singularities
In [5], the investigation of the three-parametric family of special homogeneous
spaces from the viewpoint of the normalized Ricci flow was started. The Ricci
flows describe the evolution of Einstein’s metrics on a variety. The equations of
the normalized Ricci flow are reduced to a system of two differential equations
with three parameters a1, a2 and a3:

dxj/dt = f̃1(x1, x2, a1, a2, a3), j = 1, 2, (6)

here f̃1 and f̃2 are certain functions. The singular point of this system are associ-
ated with invariant Einstein’s metrics. At the singular (stationary) point x0

1, x0
2,

system (6) has two eigenvalues λ1 and λ2. If at least one of them is equal to zero,
then the singular (fixed) point x0

1, x0
2 is said to be degenerate. It was proved in [5]

that the set Ω of the values of the parameters a1, a2, a3 at which system (6) has
at least one degenerate singular point is described by the equation

Q(s1, s2, s3) ≡ (2s1 + 4s3 − 1)
(
64s51 − 64s41 + 8s31 + 240s21s3 − 1536s1s

2
3−

−4096s33 + 12s21 − 240s1s3 + 768s23 − 6s1 + 60s3 + 1
)
− 8s1s2(2s1 + 4s3 − 1)×

× (2s1 − 32s3 − 1)(10s1 + 32s3 − 5)− 16s21s
2
2

(
52s21 + 640s1s3 + 1024s23 − 52s1−

−320s3 + 13) + 64(2s1 − 1)s32(2s1 − 32s3 − 1) + 2048s1(2s1 − 1)s42 = 0,
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where s1, s2, s3 are elementary symmetric polynomials, equal respectively to s1 =
a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

In [6], for symmetry reasons, the coordinates a = (a1, a2, a3) were changed
to the coordinates A = (A1, A2, A3) by a linear transformation a = MA.

In [6] all singular points of the variety Ω in coordinates A = (A1, A2, A3) were
found. There are five points of the third order. Among them P

(3)
1 = (0, 0, 3/4).

There are three second-order points and three algebraic curves of singular points
of the first order. Among them is I = {A1 +A2 + 1 = 0, A3 = 1/2}.

In the talk we will consider the variety Ω in the neighborhood of point P
(3)
1

and curve I. The methods proposed in [4] and described in Sections 2-5 are im-
plemented.
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