Approximation of the zeros of the Riemann zeta function by rational functions

Yuri Matiyasevich

Abstract

We define rational functions $R_{N}\left(a, d_{0}, d_{1}, \ldots, d_{N}\right)$ and demonstrate by numerical examples the following property. Let $d_{0}, d_{1}, \ldots, d_{N}$ be equal respectively to the value of the Riemann zeta function and the values of its first N derivatives calculated at a. If a is not too far from a zero ρ of the zeta function, then the value of $R_{N}\left(a, d_{0}, d_{1}, \ldots, d_{N}\right)$ is very close to ρ. For example, for $N=10$ and $a=0.6+14 \mathrm{i}$ we have $\left|R_{10}\left(a, d_{0}, d_{1}, \ldots, d_{10}\right)-\rho_{1}\right|<10^{-14}$ where $\rho_{1}=0.5+14.13 \ldots$ i is the first non-trivial zeta zero.

Also we define rational functions $R_{N}\left(a, d_{0}, d_{1}, \ldots, d_{N}, n\right)$ which (under the same assumptions) have values which are very close to $n^{-\rho}$, that is, to the summands from the Dirichlet series for the zeta function calculated at its zero.

In the case when a is, say between two consecutive zeros, ρ_{l} and ρ_{l+1}, functions $R_{N}\left(a, d_{0}, d_{1}, \ldots, d_{N}, n\right)$ approximate neither $n^{-\rho_{l}}$ nor $n^{-\rho_{l+1}}$; nevertheless, they allow us to approximate the sum $n^{-\rho_{l}}+n^{-\rho_{l+1}}$ and the product $n^{-\rho_{l}} n^{-\rho_{l+1}}$ and hence to calculate both $n^{-\rho_{l}}$ and $n^{-\rho_{l+1}}$ by solving corresponding quadratic equation.

Introduction

The celebrated Riemann zeta function $\zeta(s)$ can be defined for a complex number s with real part greater than 1 via a Dirichlet series,

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}, \tag{1}
\end{equation*}
$$

and analytically extended to the whole complex plane. B. Riemann established a deep relationship between the zeros of this function and the prime numbers. Namely, he found an explicit expression for $\pi(x)$ - the number of primes below x - via these zeros.

The outstanding Riemann Hypothesis predicts that all the non-real zeros of the zeta function are lying on the critical line $\Re(s)=1 / 2$. The hypothesis is equivalent to the assertion that

$$
\begin{equation*}
\pi(x)=\int_{2}^{x} \frac{\mathrm{~d} y}{\ln (y)}+O(\ln (x) \sqrt{x}) \tag{2}
\end{equation*}
$$

We address the following problem. Suppose that

$$
\begin{equation*}
d_{k}=\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}} \zeta(s)\right|_{s=a}, \quad k=0, \ldots, N \tag{3}
\end{equation*}
$$

where number a is not far from a zero ρ of the zeta function. How numbers $a, d_{0}, d_{1}, \ldots, d_{N}$ could be used for calculating this ρ with high precision?

1. Standard method

A straightforward way is to consider polynomial

$$
\begin{equation*}
T_{N}(s)=\sum_{k=0}^{N} \frac{d_{k}}{k!}(s-a)^{k} \tag{4}
\end{equation*}
$$

(an initial fragment of Taylor series) and solve algebraic equation

$$
\begin{equation*}
T_{N}(s)=0 \tag{5}
\end{equation*}
$$

This approach has several drawbacks.
First, unless $N \leq 4$, there is no "explicit" expression for the roots of this equation.

Second, we cannot analytically pinpoint which of the N roots of the equation is the desired approximation to ρ.

Third, ρ should be closer to a than the pole of the zeta function at $s=1$.

2. Our method

We define

$$
\begin{gather*}
d_{m, k}=\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}} \zeta_{m}(s)\right|_{s=a}=\sum_{l=0}^{m}\binom{m}{l}(-\ln (n))^{m-l} d_{l} \tag{6}\\
T_{m, N}(s)=\sum_{k=0}^{N} \frac{d_{m, k}}{k!}(s-a)^{k}=b_{m, N, 0}+\sum_{k=1}^{N} b_{m, N, k} s^{k} \tag{7}\\
T_{m, N}\left(s_{1}, \ldots, s_{N}\right)=b_{m, N, 0}+\sum_{k=1}^{N} b_{m, N, k} s_{k} \tag{8}
\end{gather*}
$$

and solve linear system

$$
\begin{equation*}
T_{m, N}\left(s_{1}, \ldots, s_{N}\right)=0, \quad m=1, \ldots, N \tag{9}
\end{equation*}
$$

Clearly, s_{1}, \ldots, s_{n} are rational functions of a, d_{1}, \ldots, d_{N}.

Figure 1. The small dots represent the real (on the left-hand plot) and the imaginary (on the right-hand plot) parts of s_{1} from solutions of systems (9) for $N=10$ and $a=0.4+\mathrm{i} \tau, \tau$ running from 10 to 50 with step 0.01 . The ten larger dots on each plot represent the ten initial zeta zeros; the abscissas of the dots are equal to the imaginary parts of these zeros on both plots; the ordinates of the dots are equal respectively to the real and imaginary parts of the zeros.

Calculations demonstrate (see [1, 3]) that when a is not too far from a zero ρ of the zeta function, s_{n} is rather close to ρ_{1}. This is illustrated for $n=1$ by Fig 1$]$, We see that $\Re\left(s_{1}\right)$ is mainly equal to $1 / 2$. As for $\Im\left(s_{1}\right)$, it looks almost as a step function with levels equal to the imaginary parts of the zeros of the zeta function.

Calculations suggest the following guess.
Conjecture A. For all a except for a set of zero measure there is a zero ρ of the zeta function such that for all k the value of s_{k} from the solution of system (9) tends to ρ^{k} as $N \rightarrow \infty$.

In order to define functions $R_{N}\left(a, d_{0}, d_{1}, \ldots, d_{N}, n\right)$ we replace polynomials (4) by Dirichlet polynomials

$$
\begin{equation*}
D_{m, N}(s)=\sum_{n=1}^{N} c_{m, N, n} n^{-s} \tag{10}
\end{equation*}
$$

having the same initial Taylor expansion as $\zeta_{m}(s)$. Polynomials (8) are replaced by linear polynomials

$$
\begin{equation*}
Q_{m, N}\left(q_{2}, \ldots, q_{N}\right)=c_{m, N, 1}+\sum_{n=2}^{N} c_{m, N, n} q_{n} \tag{11}
\end{equation*}
$$

and $R_{N}\left(a, d_{0}, d_{1}, \ldots, d_{N}, n\right)$ is defined as the value of q_{n} from the solution of system

$$
\begin{equation*}
Q_{m, N}\left(q_{2}, \ldots, q_{N}\right)=0, \quad m=1, \ldots, N-1 . \tag{12}
\end{equation*}
$$

So defined q_{n} approximate very well $n^{-\rho}$ when a is not too far from a zero ρ of the zeta function (see [2, 3]). This suggest the following guess.

Conjecture B. For all a except for a set of zero measure there is a zero ρ of the zeta function such that for all $n>1$ the value of q_{n} from the solution of system 12 tends to ρ^{n} as $N \rightarrow \infty$.

In the case when a is, say between two consecutive zeros, ρ_{l} and ρ_{l+1}, the value of q_{n} is close neither to $n^{-\rho_{l}}$ nor to $n^{-\rho_{l+1}}$, but

$$
\begin{equation*}
\frac{q_{n} q_{n^{2}}-q_{n^{3}}}{q_{n}^{2}-q_{n^{2}}} \approx n^{-\rho_{l}}+n^{-\rho_{l+1}}, \quad \frac{q_{n^{2}}^{2}-q_{n} q_{n^{3}}}{q_{n}^{2}-q_{n^{2}}} \approx n^{-\rho_{l}} n^{-\rho_{l+1}} \tag{13}
\end{equation*}
$$

and we can calculate approximations to both $n^{-\rho_{l}}$ and to $n^{-\rho_{l+1}}$ by solving corresponding quadratic equation.

References

[1] Matiyasevich, Yu. V., Hunting zeros of Dirichlet series by linear algebra. II. POMI Preprints, 01, 18pp. 2022, DOI: 10.13140/RG.2.2.20434.22720
[2] Matiyasevich, Yu. V., Hunting zeros of Dirichlet series by linear algebra. III (in Russian), POMI Preprents 03, 31pp. 2022, DOI: 10.13140/RG.2.2.28325.99044 extended English abstract http:logic.pdmi.ras.ru/~yumat/publications/papers/ 139_paper/eng_abstract_ext.pdf
[3] Matiyasevich, Yu., On some algebraic ways to calculate zeros of the Riemann zeta function, in Algebraic Informatics. CAI 2022. Poulakis, D. and Rahonis, G., eds., Springer, Lecture Notes in Computer Science, 13706, 15-25, 2022, DOI: 10.1007/ 978-3-031-19685-0_2.

Yuri Matiyasevich
St. Petersburg Department
of V.A. Steklov Mathematical Institute
of Russian Academy of Sciences
St. Petersburg, Russia
e-mail: yumat@pdmi.ras.ru

