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ABSTRACT

Can we develop a machine learning model to get information on the arithmetic of the moduli space of curvesMg? We
propose new methods, to apply machine learning to various databases which have emerged in the study of the moduli
spaces of algebraic curves.



BASIC QUESTIONS ABOUT THE MODULI SPACE Mg

Let g > 1 be a fixed integer, k a number field, andMg the moduli space of smooth genus g curves defined over
k̄ . It is a (quasi)projective variety of dimension 3g − 3.

Consider the following questions:
I What is the singular locus ofMg?
I What is the list of automorphisms which can occur as Aut(p) for p ∈Mg?
I What is the stratification ofMg based on the automorphisms?
I For what p ∈Mg the corresponding Jacobian has complex multiplication? What is the distribution of such

points?
I How can the points p ∈Mg be described explicitly?
I Given a k -rational point p ∈Mg(k), is there a curve X , defined over k , such that p = [X ]? For such points

we say that field of moduli is a field of definition
I What is the distribution of points inMg for which the field of moduli is a field of definition?
I Let p ∈Mg(k) and X defined over k corresponding to p. Can we determine an equation for X? Is this

equation canonical in some sense? Reduction type A
I Is there a way to create some kind of a ”database” of k -rational moduli points p ∈Mg(k) such that the field

of moduli is a field of definition? In other words, how to order points inMg or define some kind of ”size” for
p ∈Mg(k)? Can we choose a coordinate inMg such that points inMg(k) are of ”small size” Reduction
Type B or moduli reduction



LEARNING MODELS
Supervised ML methods
Unsupervised Machine Learning methods

GENUS 2 AS A CASE STUDY
Invariants for genus 2 curves
Subloci of M2

AUTOMORPHISMS
Definition of strata based on automorphisms; Hurwitz spaces
Stratification ofMg based on automorphisms

FROM HYPERELLIPTIC TO SUPERELLIPTIC

MODULI POINTS AND GEOMETRIC INVARIANT THEORY (GIT)
Weighted projective spaces
Sorting points in the moduli space; weighted heights

COMPLEX MULTIPLICATION



SUPERVISED ML METHODS

Supervised learning is a machine learning approach that?s defined by its use of labeled datasets. These
datasets are designed to train or supervise algorithms into classifying data or predicting outcomes accurately.
Using labeled inputs and outputs, the model can measure its accuracy and learn over time.

1. Determine the type of training examples. Before doing anything else, the user should decide what kind of
data is to be used as a training set.

2. Gather a training set. The training set needs to be representative of the real-world use of the function. Thus,
a set of input objects is gathered and corresponding outputs are also gathered, either from human experts
or from measurements.

3. Determine the input feature representation of the learned function. The accuracy of the learned function
depends strongly on how the input object is represented. Typically, the input object is transformed into a
feature vector, which contains a number of features that are descriptive of the object.

4. Determine the structure of the learned function and corresponding learning algorithm. For example, the
engineer may choose to use support-vector machines or decision trees.

5. Complete the design. Run the learning algorithm on the gathered training set. Some supervised learning
algorithms require the user to determine certain control parameters. These parameters may be adjusted by
optimizing performance on a subset (called a validation set) of the training set, or via cross-validation.

6. Evaluate the accuracy of the learned function. After parameter adjustment and learning, the performance of
the resulting function should be measured on a test set that is separate from the training set.



UNSUPERVISED MACHINE LEARNING METHODS

Unsupervised learning uses machine learning algorithms to analyze and cluster unlabeled datasets. These
algorithms discover hidden patterns or data groupings without the need for human intervention.

I Clustering
I Association Rules
I Dimensionality reduction

Challenges of unsupervised learning

While unsupervised learning has many benefits, some challenges can occur when it allows machine learning
models to execute without any human intervention. Some of these challenges can include:
I Computational complexity due to a high volume of training data
I Longer training times
I Higher risk of inaccurate results
I Human intervention to validate output variables
I Lack of transparency into the basis on which data was clustered



COUNTING RATIONAL POINTS ON Mg

Let g be an integer g ≥ 2 andMg the moduli space of smooth, irreducible curves of genus g. Mg is an
algebraic variety of dimension 3g − 3. Hence,Mg is embedded in P3g−2. Here are a few facts:
I If X is a curve defined over Q, then the corresponding moduli point is also defined over Q, say p ∈Mg(Q).
I If p ∈Mg(Q) it is not true that we can find a curve X defined over Q corresponding to p. In other words,
Mg os a coarse moduli space.

I Let p ∈Mg(Q) and F a minimal field of definition of p. Then F is a number field and F/Q is called the
obstruction of p.

PROBLEM
Can we somehow count the rational points inMg? Moreover, can we count how many of them have non-trivial
obstruction.

Let p ∈Mg . We call the moduli height h(p) the usual height H(P) in the projective space P3g−2.
Obviously, when we fix some coordinate inMg , h(p) is an invariant of the curve.

LEMMA
For any constant c ≥ 1, degree d ≥ 1, and genus g ≥ 2 there are finitely many curves Xg defined over the ring
of integers ØK of an algebraic number field K such that [K : Q] ≤ d and h(Xg) ≤ c.



GENUS 2 CURVES

Every genus 2 curve has equation

Y 2Z 4 = F (X ,Z ) = a6X 6 + a5X 5Z + · · ·+ a1XZ 5 + a0Z 6

Bolza determined invariants of binary sextics (Bolza, 1887) in char k 6= 2 and Igusa extended it for char k = 2.
Hence, in the literature such invariants are mistakenly known as Igusa invariants.

J2 := − 240a0a6 + 40a1a5 − 16a2a4 + 6a2
3

J4 :=48a0a3
4 + 48a3

2a6 + 4a2
2a2

4 + 1620a2
0a2

6 + 36a1a2
3a5 − 12a1a3a2

4 − 12a2
2a3a5 + 300a2

1a4a6 + 300a0a2
5a2

+ 324a0a6a2
3 − 504a0a4a2a6 − 180a0a4a3a5 − 180a1a3a2a6 + 4a1a4a2a5 − 540a0a5a1a6 − 80a2

1a2
5

J6 := − a2
5a2

4a2
2 + 1600a3

1a5a4a6 + 1600a1a3
5a0a2 − 2240a2

1a2
5a0a6 + 20664a2

0a4a2
6a2 − 640a0a4a2

2a2
5 − 18600a0a4a2

1a2
6 + 76a1a3a2a3

4 − 198a1a3
3a2a6

+ 26a1a3a2
2a2

5 + 616a3
2a5a1a6 + 28a1a2

4a2
2a5 − 640a2

1a2
4a2a6 + 26a2

1a2
4a3a5 + 616a1a3

4a0a5 + 59940a2
0a5a2

6a1 + 330a0a2
5a2

3a2 + 8a2
2a2

3a2
4 − 24a2

2a2
3a5

+ 60a3
2a2

3a6 + 60a0a3
4a2

3 − 192a3
2a0a2

6 − 320a4
2a4a6 + 176a2

1a2
5a2

3 + 2250a3
1a3a2

6 − 900a2
2a2

1a2
6 − 900a2

0a2
5a2

4 − 10044a2
0a2

6a2
3 + 162a0a6a4

3 − 36a4
2a2

5

− 36a2
1a4

4 + 76a3
2a2 − 320a3

1a3
5 + 484a + 492a0a2

4a2a3a5 + 492a0a2
4a2a3a5 + 3060a2

0a4a6a3a5 − 468a0a4a2
3a2a6 + 3472a0a4a2a5a1a6 + 492a1a3a2

2a4a6

− 238a1a2
3a2a4a5 + 1818a1a2

3a0a6a5 − 876a2
2a0a6a3a5 − 3a5 − 198a0a4a3

3a5 + 330a2
1a2

3a6a4 + 72a1a4
3a5 − 24a1a3

3a2
4 + 2250a2

0a3
5a3 − 1860a1a4a0a2

5a3

+ 3060a1a3a0a2
6a2 − 876a0a2

4a1a6a3 − 1860a2
1a3a2a5a6 − 18600a2

0a2
5a6a2 − 24a3

2a3
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0a3
6

J10 :=a−1
6 ResX

(
f ,
∂f

∂X

)

Two genus 2 curves X and X ′ are isomorphic over k if and only if exists λ ∈ k? such that J2i (X ) = λ2i J2i (X ′).



GENUS 2 CURVES

Let the space of all tuples (J2, J4, J6, J10) be S. Define the following relation in S as follows. Two tuples

(J2, J4, J6, J10) ∼
(
J′2, J

′
4, J
′
6, J
′
10
)
⇐⇒ ∃λ ∈ k?, (J2, J4, J6, J10) =

(
λ2J′2, λ

4J′4, λ
6J′6, λ

10J′10

)
Set of equiv. classes is called a weighted projective space denoted by WP(2,4,6,10)(k). It is embedded into P3:

Veronese embedding: WP(2,4,6,10),k → P3
k , via [J2 : J4 : J6 : J10]→

[
J30

2 : J15
4 : J10

6 : J6
10

]
.

Since J10 6= 0, then
[
J30

2 : J15
4 : J10

6 : J6
10

]
≡
[

J30
2

J6
10

:
J15

4
J6

10
:

J10
6

J6
10

: 1
]
. Thus, two curves are isomorphic iff they have

the same absolute invariants j1 :=
J30

2
J6

10
, j2 :=

J15
4

J6
10
, j3 :=

J10
6

J6
10

. To avoid high degrees sometimes different invariants

have been used, where i1 = J4
J2

2
, i2 =

J2J4−J6
J3

2
, i3 =

J10
J5

2
, but they are not defined everywhere inM2.

Wouldn’t it make more sense to keep track of only tuples (J2, J4, J6, J10) instead?

In (Shaska et al., 2020) we introduce normalized points in WP2,4,6,10(Q) which uniquely determine the minimal
representative of [J2 : J4 : J6 : J10] and and sort them according to their weighted heights.



INCLUSION AMONG THE LOCI

M2 as a projective space is the set of (affine) points (i1, i2, i3) or projective points [J30
2 : J15

4 : J10
6 : J6

10].

Here are a few things we want to do:

PROBLEM (FIELD OF MODULI VS MINIMAL FIELD OF DEFINITION)
Given p ∈M2(Q), is there a curve C defined over Q such that p = [C]. Can we determine the distribution of
such curves inM2?

For |Aut(p)| = 2, (Mestre, 1991) gave an algorithm which constructed a curve X defined over Q, when such
curve existed. In (Cardona and Quer, 2005) is proved that for curves with |Aut(p)| > 2 the field of moduli is a field
of definition.

Notice that different approaches work for the case |Aut(p)| = 2 and |Aut(p)| > 2. In (Malmendier and Shaska,
2017) constructed a ”universal” curve that for any moduli point p = [J2 : J4 : J6 : J10] gives the equation of X
over a minimal field of definition.

How good is this equation for X?
Example: Consider now the problem of being given the curve

y2 = 442765625x6 − 719030400000x5 + 320847859200000x4 − 64095440076800000x3

+ 6360693303410688000x2 − 282590704159256739840x + 3449767488965367037952

We get p = [J2 : J4 : J6 : J10] = [30, 108, 1440, 1296] and from (Malmendier and Shaska, 2017)

y2 = 28337x6 − 326832x5 + 1035795x4 − 1469600x3 + 1035795x2 − 326832x + 28337

However, with some reduction algorithm we can show that this is isomorphic over Q to

y2 = x5 + x4 + x3 + x2 + x + 1
Let X be a genus 2 curve with equation

y2 = 7 t6 −
(

78 + 16
√

5
)

t5 +
(

72
√

5 + 617
)

t4 −
(

320
√

5 + 2148
)

t3 +
(

4961 + 456
√

5
)

t2 −
(

5214 + 672
√

5
)

t + 3167

Then, the algorithm in (Malmendier and Shaska, 2017) gives

y2 = 359785557t6 + 4935433518t5 + 29692428795t4 + 98737979076t3 + 193917220155t2 + 210507034158t + 100220296853

We can do better, via some reduction and get y2 = t6 + 2t4 + t2 + 3. Reduction type A; see (Shaska, 2022).

PROBLEM (REDUCTION TYPE A)
Determine an algorithm that finds the equation of a curve with the minimal size coefficients!
Do the size of coefficients of X depend on the ”size” of coordinates of p = [J2 : J4 : J6 : J10]? Is there a way that
we can ”store” the smallest representative of p?

PROBLEM (REDUCTION TYPE B)
Determine a method that finds the ”smallest” representative for p.

It was exactly this fact and computational efforts which led to the definition of the weighted general common
divisors and weighted heights as we will see next.



GENUS 2: A CASE STUDY

Input: a sextic polynomial f (t)
J30 J30 : the V4-locus
Igusa Igusa invariants [J2, J4, J6, J10]
RatMod Rational model of the curve over when such model exists.
RatModMe Rational model over Q, when such model exists, as in Mestre (Mestre, 1991)
height Height of the sextic
EquivBin Checks if sextics are equivalent
RatModTable Rational Model from the Table of minimal models
MinField Minimal field of definition
Info Displays information about the curve y2 = f (t)
RatForm Rational Model from Malmendier/Shaska (Malmendier and Shaska, 2019)

Input: the moduli point (J2, J4, J6, J10)
J30_j J30, V4-locus
L_D4 Locus of curves with group D4
L_D6 Locus of curves with group D6
AutGroup Automorphism group of the curve
ModHeight Modular height
Moduli Space
curves_moduli Computes the number of rational points of height h in the moduli space and how many of those have a rational model
NumbCurvMod number of rational points of moduli height h, how many of them have a rational model over Q, how many of them have automorphisms
moduli_points Computes the number of rational points of height h in the moduli space
MoPtsCurvAut Moduli points with automorphisms
Creating the databases
Curves(h, L) Creates the dictionary L1 of curves with height h
CurvesAut(h, L) Creates the dictionary L2 of curves with automorphisms
CurvHe Number of curves with height h
CurvHeW(h, w) Number of curves with height h and w
NCWT(h, w) Number of curves with height h and twists w
CurvesTabOverQ(h, w) Counts the number of curves over Q, including twist, for given height.



AUTOMORPHISMS OF CURVES

Let Xg denote an algebraic curve of genus g ≥ 2, defined over k̄ = k , and K = k(Xg). The automorphism group
Aut(Xg) of Xg is the group of automorphisms of K defined over k . From Riemann-Hurwitz formula we derive
what is now known as the Hurwitz bound. |Aut(Xg)| ≤ 84 (g − 1)

Let Xg be hyperelliptic. Then, Xg : y2 = f (x), where deg f = 2g + 2. Let G = Aut(Xg)
and w : (x , y)→ (−x , y) be the hyperelliptic involution. Then, w is central in G.

The group Ḡ := G/〈w〉 is called the reduced automorphism group of Xg . Hence, Ḡ is
finite and

Ḡ ↪→ Aut(k(x)/k)∼= PGL(2, k)

Hence, G is a degree 2 central extensions of Ḡ and Ḡ∼= Cn,Dn,A4,S4,A5.

K

〈w〉

G

��

k(x)

Ḡ=G/〈w〉

k

Let Xg be a curve and H := 〈τ〉 be a normal cyclic subgroup of order n of G =

Aut(Xg) which fixes a genus 0 space Xg/H. The group Ḡ = G/H is called the reduced
automorphism group of Xg .

We call such curves superelliptic curves. They have affine equation yn = f (x), for some
polynomial f (x). Then τ : (x , y)→ (x , ζy), where ζn = 1.

K

H

G

��

k(x)

Ḡ=G/H

k



STRATIFICATION OF Mg BASED ON AUTOMORPHISMS

FIGURE: Inclusion of the loci inMg for genus 3 and 4; see (Magaard et al., 2002)



FROM HYPERELLIPTIC TO SUPERELLIPTIC
In (Malmendier and Shaska, 2019) we make the case that superelliptic loci are the building blocks of
understanding the general theory ofMg (no surprise here!) Think of Galois theory and cyclic extensions.

Genus g = 4. From 41 total cases, only 13 are non-superelliptic.



GEOMETRIC INVARIANT THEORY (GIT)
Mg can be compactified by adding ”boundary” points (semistable curves). The compactification is denoted by
Mg . The dimension ofMg is dim(Mg) = 3g − 3. Indeed it is irreducible (Deligne/Mumford). The hyperelliptic
sublocus Hg inMg has dimension 2g − 1 and when g = 2 we get Hg =Mg .

From GIT, for any curve X the corresponding moduli point is a set of invariants (ξ0, . . . , ξd ). How can we
explicitly describe points inMg?
I If X is a curve defined over Q, then the corresponding moduli point is also defined over Q, say p ∈Mg(Q).
I If p ∈Mg(Q) it is not true that we can find a curve X defined over Q corresponding to p. In other words,
Mg is a coarse moduli space.

I Let p ∈Mg(Q) and F a minimal field of definition of p. Then F is a number field and F/Q is called the
obstruction of p.

THEOREM (SHIMURA)
If p ∈Mg and Aut(p) = {id}, then the field of moduli k(p) is a field of definition.

Hence, a generic point ofMg has no obstruction. However, the hyperelliptic locus is different. The generic curve
p ∈ Hg (|Aut(p)| = 2) is not necessarily defined over k(p), but it is defined over a quadratic extension of k(p).

PROBLEM
Can we somehow count the rational points inMg? Moreover, can we count how many of them have non-trivial
obstruction.



WEIGHTED PROJECTIVE SPACES

Let k be a field of characteristic zero and w = (q0, . . . , qn) ∈ Zn+1 a fixed tuple of positive integers called
weights. Consider the action of k? = k \ {0} on An+1(k) as follows

λ ? (x0, . . . , xn) =
(
λq0 x0, . . . , λ

qn xn
)
, for λ ∈ k∗.

The quotient of this action is called a weighted projective space and denoted by WPn
(q0,...,qn),k . It is the projective

variety Proj (k [x0, ..., xn]) associated to the graded ring k [x0, . . . , xn] where the variable xi has degree qi for
i = 0, . . . , n. Denote a point p ∈WPn

w (k) by p = [x0 : x1 : · · · : xn].
For an ordered tuple of integers x = (x0, . . . , xn) ∈ Zn+1, whose coordinates are not all zero, the weighted
greatest common divisor with respect to the set of weights w is the largest integer d such that

dqi | xi , for all i = 0, . . . , n, denoted by wgcd(x0, . . . , xn) = wgcd(x)

An integral point x = [x0 : · · · : xn] such that wgcd(x0, . . . , xn) = 1 is called normalized.

The absolute weighted gcd of x = (x0, . . . , xn) with respect to w is the largest real number d such that

dqi ∈ Z and dqi | xi , for all i = 0, . . . n.

We denote it by wgcd(x). An integer tuple x with wgcd(x) = 1 is called absolutely normalized. For
p ∈WPn

w(k), points

y =
1

wgcd(p)
? p, and ȳ =

1

wgcd(p)
? p,

are integral and normalized (resp. integral and absolutely normalized).



VERONESE EMBEDDING

A weighted space Pn
w,k is called reduced if gcd(q0, · · · , qn) = 1. It is called normalized or well-formed if

gcd(q0, . . . , q̂i , . . . , qn) = 1, for each i = 0, . . . , n.

PROPOSITION
Given any tuple of weights w = (q0, . . . , qn), the following hold:

(i) Any weighted projective space Pn
w,k is isomorphic to Pn

w′,k , where w′ is a reduced tuple of weights.

(ii) If Pn
w,k is reduced and di = gcd(q0, · · · , q̂i , · · · , qn) for 0 ≤ i ≤ n, then Pn

w,k
∼=Pn

w′,k with

w′ =
(

q0
di
, . . . ,

qi−1
di
, qi ,

qi+1
di
, . . . , qn

di

)
.

(iii) Any weighted projective space is isomorphic to a reduced and well-formed one.

(iv) If w is reduced and all of m/qi are coprime, where

m = lcm (q0, · · · , qi ) ,

then Pn
w,k is isomorphic to Pn

k by the following isomorphism:

φm : Pn
w,k −→ Pn

k ,

φm([x0, . . . , xn]) = [xm/q0
0 , xm/q1

1 , . . . , xm/qn
n ].

(1)



WEIGHTED HEIGHTS
HEIGHTS ON WEIGHTED PROJECTIVE SPACES

Let w = (q0, . . . , qn) be a set of weights and p ∈WPn(k̄) a point such that p = [x0, . . . , xn].

Can we introduce a height function on WPn
w(k)?

In (Shaska et al., 2020) we define the weighted multiplicative height of p and the logarithmic weighted
height are

S(p) :=
∏

v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
and logS(p) := logSk (p) =

∑
v∈Mk

max
0≤j≤n

{
nv

qj
· log |xj |v

}
.

I Sk (p) does not depend on the choice of coordinates of p.
I Sk (p) ≥ 1.

I If p is normalized in K = Q(wgcd(p)), then SK (p) = S∞(p) = max0≤i≤n

{
|xi |

nν
qi∞

}
I If L/K is a finite extension, then SL(p) = SK (p)[L:K ].

I Let m = lcm(q0, q1 · · · , qn). Then Sk (x) = Hk (φm(x))
1
m and sk (x) = 1

m · hk (φm(x)) ,, for all x ∈ Pn
w(k),

where φm is the Veronese map.



WEIGHTED HEIGHTS
HEIGHTS ON WEIGHTED PROJECTIVE SPACES

In WPn(Q) we define the absolute (multiplicative) weighted height h̃ : WPn(Q̄)→ [1,∞)

h̃(p) = SK (p)1/[K :Q],

where p ∈WPn(K ), for any K which contains Q(wgcd(p)).

I The height is invariant under Galois conjugation. For p ∈WPn(Q) and σ ∈ GQ, S(pσ) = S(p)

I For any point p ∈WPn
w(Q), we have [Q(p) : Q] ≤ q · [Q(φ(p)) : Q]

I (Northcott) Let c0 and d0 be constants and WPn
w (Q) the weighted projective space with weights

w = (q0, . . . , qn). Then the set

{p ∈WPn
w (Q) : SQ(p) ≤ c0 and [Q(p) : Q] ≤ d0}

contains only finitely many points.
I There are finitely many points p ∈WPn

w(Q) of bounded height, {p ∈WPn
w (Q) : SQ̄(p) ≤ c0} is finite.

How good are the weighted heights?

They solve the sorting problem in weighted moduli spaces.



CM-CURVES

PROBLEM
Let X be a smooth, algebraic curve of genus g ≥ 1, defined over a field k, and its Jacobian Jack (X ). Determine
when JacX has complex multiplication (CM).

They were first studied by M. Deuring (Deuring, 1941; 1949) for elliptic curves and generalized to Abelian
varieties by (Shimura and Taniyama, 1961).

X is said to have complex multiplication when Jack (X ) is of CM-type.

CM is a property of the Jacobian, so it is an invariant of X .

Is there anything special about the points inMg for which Jack (X ) is of CM-type?

F. Oort asked if curves with many automorphisms are all of CM-type?

The answer to this question is negative.

THEOREM ((Obus and Shaska, 2021))
If X is a superelliptic curve with many automorphisms, then X is one of the curves on the following Table. X is
has CM if and only if it is one of the cases in Table ??.



THINGS LEFT TO DO!
Will this work? Are we able to get reliable results?
Using the idea of weighted projective spaces and weighted heights we can do a lot of computation inMg and
arithmetic statistics.

The first caseM2:
I Using the universal equation in (Malmendier and Shaska, 2017) and the database of genus 2 curves, study

the distribution of rational points inM2 for which the field of moduli is a field of definition.
I Using (van Wamelen, 1999) study a distribution of CM-curves inM2.
I In Beshaj’s thesis a constant was determined such that

naive height (C) ≤ λ · moduli height (C)

for some constant λ. Determine from the database a smaller universal constant λ.

The caseM3:

The case ofM3 is also well understood, but computations are rather more difficult. Some databases for
hyperelliptic and non-hyperelliptic genus 3 curves do exist:
I Based on weighted heights sort all points inM3.
I Based on stratification ofM3, determine parametric equations for each case (including non-superelliptic

cases)
I Determine a distribution of points inM3 for which the field of moduli is not a field of definition.
I Determine a distribution of CM-points inM3



THINGS LEFT TO DO!

Higher genus
I We can determine the stratification of theMg for any g ≥ 2
I We can determine all superelliptic loci, including parametric equations, dimension of each locus, inclusions

among loci.
I Completing the above gives a precise understanding of about 80% of loci
I Superelliptic curves correspond to binary forms. So their isomorphism classes correspond to invariants of

binary forms (another classical problem where ML can be used).
I From GIT we know that, in general, there are invariants describing points inMg . Very little is known about

explicitly writing them down for higher genus.

Goal:

We hope to have explicit results by the end of the Summer for g = 4, building on databases from g = 2, 3.
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