An Algorithm for Solving Two-Sided Linear Vector Equations in Tropical Algebra

Nikolai Krivulin

Faculty of Mathematics and Mechanics
St. Petersburg State University St. Petersburg, Russia

E-mail: nkk<at>math.spbu.ru
URL: http://www.math.spbu.ru/user/krivulin/
Polynomial Computer Algebra 2023 (PCA '2023)
Euler International Mathematical Institute, St. Petersburg, Russia April 17-22, 2023

Outline

Introduction
Max-Plus Algebra
Tropical Vector Space
Distance Function
One-Sided Equation and Inequality
One-Sided Vector Equation
Two-Sided Equation
Alternating Algorithm
Equations Based Alternating
Conclusion
N. Krivulin (SPbSU)

Max-Plus Algebra

- Max-plus algebra $\mathbb{R}_{\text {max },+}$ is the set of reals with $-\infty$ adjoined
- It is closed under the addition \oplus and multiplication \otimes defined as

$$
x \oplus y=\max (x, y), \quad x \otimes y=x+y
$$

(in what follow the multiplication sign \otimes is omitted to save writing)

- The neutral elements are the zero $\mathbb{O}=-\infty$ and the identity $\mathbb{1}=0$
- For any $x \neq \mathbb{O}$, the multiplicative inverse x^{-1} is equal to $-x$
- The power x^{y} corresponds to the arithmetic product $y x$
- Algebra of matrices and vectors is introduced in the usual way
- Matrix (vector) operations follow standard entrywise formulas with arithmetic addition and multiplication replaced by \oplus and \otimes
- For a column vector $\boldsymbol{a}=\left(a_{i}\right)$, its multiplicative conjugate is a row vector $\boldsymbol{a}^{-}=\left(a_{i}^{-}\right)$with $a_{i}^{-}=a_{i}^{-1}$ if $a_{i} \neq \mathbb{O}$, and $a_{i}^{-}=\mathbb{O}$ otherwise
- All vectors are considered column vectors unless otherwise stated

Tropical Vector Space

- Consider a system of vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}_{\text {max },+}^{m}$
- A vector $\boldsymbol{b} \in R_{\max ,+}^{m}$ is a linear combination of the vectors if

$$
\boldsymbol{b}=x_{1} \boldsymbol{a}_{1} \oplus \cdots \oplus x_{n} \boldsymbol{a}_{n}, \quad x_{1}, \ldots, x_{n} \in \mathbb{R}_{\max ,+}
$$

- The linear span defined as the set of all linear combinations

$$
\mathcal{A}=\left\{x_{1} \boldsymbol{a}_{1} \oplus \cdots \oplus x_{n} \boldsymbol{a}_{n} \mid x_{1}, \ldots, x_{n} \in \mathbb{R}_{\max ,+}\right\}
$$

is closed under vector addition and scalar multiplication

- The linear span \mathcal{A} is referred to as a tropical vector (sub)space that is generated by the system of vectors a_{1}, \ldots, a_{n}
- Any vector $a \in \mathcal{A}$ can be represented with the matrix $\boldsymbol{A}=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)$ and a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ as the product

$$
a=A \boldsymbol{x}
$$

Vector Operations and Linear Span in $\mathbb{R}_{\text {max },+}^{2}$

Figure: Addition (left), scalar multiplication (middle), and a linear span (right)

- Addition follows the rectangle law (instead of parallelogram law)
- Multiplication shifts the vector in the direction of 45° to the axes
- Linear span takes the form of a band between lines lying at 45°

Distance Function

- For any vectors $\boldsymbol{a}=\left(a_{i}\right)$ and $\boldsymbol{b}=\left(b_{i}\right)$ without zero components, we define a distance function as follows:

$$
d(\boldsymbol{a}, \boldsymbol{b})=\bigoplus\left(b_{i}^{-1} a_{i} \oplus a_{i}^{-1} b_{i}\right)=\boldsymbol{b}^{-} \boldsymbol{a} \oplus \boldsymbol{a}^{-} \boldsymbol{b}
$$

- In the context of max-plus algebra $\mathbb{R}_{\text {max },+}$, the function d coincides for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m}$ with the Chebyshev metric

$$
d_{\infty}(\boldsymbol{a}, \boldsymbol{b})=\max _{i} \max \left(a_{i}-b_{i}, b_{i}-a_{i}\right)=\max _{i}\left|b_{i}-a_{i}\right|
$$

- Let \mathcal{A} be a vector space generated by a matrix \boldsymbol{A} without zero rows and columns, and b be a vector without zero components
- The distance from the vector b to the vector space \mathcal{A} is given by

$$
d(\mathcal{A}, \boldsymbol{b})=\min _{\boldsymbol{a} \in \mathcal{A}} d(\boldsymbol{a}, \boldsymbol{b})=\min _{\boldsymbol{x}} d(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{b})=\min _{\boldsymbol{x}}\left(\boldsymbol{b}^{-} \boldsymbol{A} \boldsymbol{x} \oplus(\boldsymbol{A} \boldsymbol{x})^{-} \boldsymbol{b}\right)
$$

One-Sided Vector Equation

- Let \mathcal{A} be a vector space generated by a matrix \boldsymbol{A} without zero rows and columns, and b be a vector without zero components
- To evaluate the distance between b and \mathcal{A}, we denote

$$
\Delta=\left(\boldsymbol{A}\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}\right)^{-} \boldsymbol{b}
$$

Lemma (K. 2004,2009)

The distance between b and \mathcal{A} is given by

$$
\min _{\boldsymbol{x}} d(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{b})=\sqrt{\Delta}
$$

where the minimum is achieved at $\boldsymbol{x}=\sqrt{\Delta}\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}$

- The closest vector in \mathcal{A} to the vector \boldsymbol{b} is $\boldsymbol{y}=\sqrt{\Delta} \boldsymbol{A}\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}$
- The value $\Delta=0$ means that $\boldsymbol{b} \in \mathcal{A}$, while $\Delta>0$ means $\boldsymbol{b} \notin \mathcal{A}$

One-Sided Equation and Inequality One-Sided Vector Equation

Distance From Vector to Tropical Vector Space in $\mathbb{R}_{\text {max },+}^{2}$

Figure: The vector b is inside the linear span \mathcal{A} (left) and outside \mathcal{A} (right)

- If the condition $\Delta=0$ holds, then $\boldsymbol{b} \in \mathcal{A}=\left\{\boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^{2}\right\}$
- If $\Delta>0$, then $\boldsymbol{b} \notin \mathcal{A}=\left\{\boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^{2}\right\}$
- The Chebyshev distance between b and \mathcal{A} is equal to $\sqrt{\Delta}$
- Let \boldsymbol{A} be a matrix without zero rows and columns, and b a vector without zero components
- Consider the one-sided equation and inequality

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad(*), \quad \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \quad(* *)
$$

- The next result follows from the above consideration of distances

Theorem (K. 2004,2009)

The following statements hold:

1. If $\Delta=0$, then equation (*) has solutions; the vector $\boldsymbol{x}=\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}$is the maximal solution;
2. If $\Delta>0$, then no solution exists; the vector $\boldsymbol{x}=\sqrt{\Delta}\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}$is the best approximate solution

Lemma

For any matrix \boldsymbol{A} without zero columns and vector \boldsymbol{b} without zero components, all solutions of inequality $(* *)$ are given by

$$
\boldsymbol{x} \leq\left(\boldsymbol{b}^{-} \boldsymbol{A}\right)^{-}
$$

Solution of One-Sided Inequality $\boldsymbol{A x} \leq \boldsymbol{b}$ in $\mathbb{R}_{\max ,+}^{2}$

Figure: The vector b is inside the linear span \mathcal{A} (left) and outside \mathcal{A} (right)

- The hatched boundaries indicate the area of vectors $\boldsymbol{A x}$ corresponding all solution vectors \boldsymbol{x}

Alternating Algorithm

- Let \boldsymbol{A} and \boldsymbol{B} be matrices without zero rows and columns
- Consider the problem to find vectors \boldsymbol{x} and \boldsymbol{y} without zero components to satisfy the two-sided equation

$$
A x=B y
$$

Alternating algorithm (Cuninghame-Green \& Butkovič, 2003)

- Given a vector x_{0}, the algorithm solves one-sided inequalities

$$
\boldsymbol{A} \boldsymbol{x}_{0} \geq \boldsymbol{B} \boldsymbol{y}_{1}, \quad \boldsymbol{A} \boldsymbol{x}_{1} \leq \boldsymbol{B} \boldsymbol{y}_{1}, \quad \boldsymbol{A} \boldsymbol{x}_{1} \geq \boldsymbol{B} \boldsymbol{y}_{2}, \quad \boldsymbol{A} \boldsymbol{x}_{2} \leq \boldsymbol{B} \boldsymbol{y}_{2}, \quad \ldots
$$

to obtain sequences of vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots$ and $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots$

- Both sequences are known to either converge to some vectors \boldsymbol{x}_{*} and \boldsymbol{y}_{*} or properly decrease after a number of steps

Alternating Algorithm

Alternating Algorithm in $\mathbb{R}_{\text {max },+}^{2}$

Figure: The sets \mathcal{A} and \mathcal{B} do not intersect (left) and intersect (right)

- The vector \boldsymbol{y}_{1} is found by solving the inequality $\boldsymbol{B} \boldsymbol{y}_{1} \leq \boldsymbol{a}_{0}=\boldsymbol{A} \boldsymbol{x}_{0}$
- The vector \boldsymbol{x}_{1} is found by solving the inequality $\boldsymbol{A} \boldsymbol{x}_{1} \leq \boldsymbol{b}_{1}=\boldsymbol{B} \boldsymbol{y}_{1}$

Alternating Algorithm

Require: $\boldsymbol{x}>\mathbf{0}$
1: Stop $\leftarrow 0 ; \quad i \leftarrow 0 ; \quad \boldsymbol{x}_{0}=\boldsymbol{x}$;
2: while Stop $=0$ do
3: $\quad \boldsymbol{y}_{i+1} \leftarrow\left(\left(\boldsymbol{A} \boldsymbol{x}_{i}\right)^{-} \boldsymbol{B}\right)^{-}$;
4: if $\boldsymbol{A} \boldsymbol{x}_{i}=\boldsymbol{B} \boldsymbol{y}_{i+1}$ or $\boldsymbol{y}_{i+1}<\boldsymbol{y}_{i}$ then
5: $\quad \boldsymbol{x}_{*} \leftarrow \boldsymbol{x}_{i} ; \quad \boldsymbol{y}_{*} \leftarrow \boldsymbol{y}_{i+1} ; \quad$ Stop $\leftarrow 1$;
6: else
7: $\quad i \leftarrow i+1$;
8: \quad end if
9: $\quad \boldsymbol{x}_{i+1} \leftarrow\left(\left(\boldsymbol{B} \boldsymbol{y}_{i}\right)^{-} \boldsymbol{A}\right)^{-}$;
10: if $\boldsymbol{A} \boldsymbol{x}_{i+1}=\boldsymbol{B} \boldsymbol{y}_{i}$ or $\boldsymbol{x}_{i+1}<\boldsymbol{x}_{i}$ then
11: $\quad \boldsymbol{x}_{*} \leftarrow \boldsymbol{x}_{i+1} ; \quad \boldsymbol{y}_{*} \leftarrow \boldsymbol{y}_{i} ; \quad$ Stop $\leftarrow 1$;
12: else
13: $\quad i \leftarrow i+1$;
14: end if
15: end while

Equations Based Alternating

- We propose an algorithm constructing a sequence of vectors taken alternatively from the both tropical vector spaces \mathcal{A} and \mathcal{B}
- After selecting a vector in one space, the next vector is found in the other space to minimize the distance to the former vector
- Given a vector x_{0}, the algorithm examines one-sided equations

$$
\boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{B} \boldsymbol{y}_{1}, \quad \boldsymbol{A} \boldsymbol{x}_{1}=\boldsymbol{B} \boldsymbol{y}_{1}, \quad \boldsymbol{A} \boldsymbol{x}_{1}=\boldsymbol{B} \boldsymbol{y}_{2}, \quad \boldsymbol{A} \boldsymbol{x}_{2}=\boldsymbol{B} \boldsymbol{y}_{2}, \quad \ldots
$$

- The algorithm successively calculate

$$
\begin{array}{ll}
\boldsymbol{y}_{1}=\sqrt{\Delta_{0}}\left(\left(\boldsymbol{A} \boldsymbol{x}_{0}\right)^{-} \boldsymbol{B}\right)^{-}, & \Delta_{0}=\left(\boldsymbol{B}\left(\left(\boldsymbol{A} \boldsymbol{x}_{0}\right)^{-} \boldsymbol{B}\right)^{-}\right)^{-} \boldsymbol{A} \boldsymbol{x}_{0} \\
\boldsymbol{x}_{2}=\sqrt{\Delta_{1}}\left(\left(\boldsymbol{B} \boldsymbol{y}_{1}\right)^{-} \boldsymbol{A}\right)^{-}, & \Delta_{1}=\left(\boldsymbol{A}\left(\left(\boldsymbol{B} \boldsymbol{y}_{1}\right)^{-} \boldsymbol{A}\right)^{-}\right)^{-} \boldsymbol{B} \boldsymbol{y}_{1}
\end{array}
$$

- We show that the sequence $\Delta_{0}, \Delta_{1}, \ldots$ converges to $\Delta_{*} \geq 0$
- If $\Delta_{*}=0$, then the two-sided equation has a solution \boldsymbol{x}_{*} and \boldsymbol{y}_{*}
- Otherwise \boldsymbol{x}_{*} and \boldsymbol{y}_{*} show one of the best approximate solutions

Equations Based Alternating Algorithm in $\mathbb{R}_{\text {max },+}^{2}$

Figure: The sets \mathcal{A} and \mathcal{B} do not intersect (left) and intersect (right)

- The algorithm stops at step i if one of the conditions holds:

1. $\Delta_{i}=0$;
2. The vector \boldsymbol{x}_{i} (or \boldsymbol{y}_{i}) coincides with \boldsymbol{x}_{j} (or \boldsymbol{y}_{j}) for some $j<i$

Equations Based Alternating Algorithm

Require: $\boldsymbol{x}>\mathbf{0}$
1: Stop $\leftarrow 0 ; \quad i \leftarrow 0 ; \quad \boldsymbol{x}_{0}=\boldsymbol{x}$;
2: while S top $=0$ do
3: $\quad \Delta_{i} \leftarrow\left(\boldsymbol{B}\left(\left(\boldsymbol{A} \boldsymbol{x}_{i}\right)^{-} \boldsymbol{B}\right)^{-}\right)^{-} \boldsymbol{A} \boldsymbol{x}_{i} ; \quad \boldsymbol{y}_{i+1} \leftarrow \sqrt{\Delta_{i}}\left(\left(\boldsymbol{A} \boldsymbol{x}_{i}\right)^{-} \boldsymbol{B}\right)^{-} ;$
4: if $\Delta_{i}=0$ or $\boldsymbol{y}_{i+1}=\boldsymbol{y}_{j}$ for some $j<i$ then
5: $\quad \Delta_{*} \leftarrow \Delta_{i} ; \quad \boldsymbol{x}_{*} \leftarrow \boldsymbol{x}_{i} ; \quad \boldsymbol{y}_{*} \leftarrow \boldsymbol{y}_{i+1} ; \quad$ Stop $\leftarrow 1 ;$
6: else
7: $\quad i \leftarrow i+1$;
8: \quad end if
9: $\quad \Delta_{i} \leftarrow\left(\boldsymbol{A}\left(\left(\boldsymbol{B} \boldsymbol{y}_{i}\right)^{-} \boldsymbol{A}\right)^{-}\right)^{-} \boldsymbol{B} \boldsymbol{y}_{i} ; \quad \boldsymbol{x}_{i+1} \leftarrow \sqrt{\Delta_{i}}\left(\left(\boldsymbol{B} \boldsymbol{y}_{i}\right)^{-} \boldsymbol{A}\right)^{-}$;
10: \quad if $\Delta_{i}=0$ or $\boldsymbol{x}_{i+1}=\boldsymbol{x}_{j}$ for some $j<i$ then
11: $\quad \Delta_{*} \leftarrow \Delta_{i} ; \quad \boldsymbol{x}_{*} \leftarrow \boldsymbol{x}_{i+1} ; \quad \boldsymbol{y}_{*} \leftarrow \boldsymbol{y}_{i} ; \quad$ Stop $\leftarrow 1 ;$
12: else
13: $: \quad i \leftarrow i+1$;
14: end if
15: end while

Conclusion

- We have proposed a solution procedure based on alternatively solving one-sided equations rather than one-sided inequalities
- The procedure admits a clear geometrical explanation in terms of distances between vectors in tropical vector spaces
- The deviation between both sides of equation are evaluated for iterations, which can be useful in finding approximate solutions

