Doubly-periodic string comparison

Nikita Gaevoy and Alexander Tiskin
Department of Mathematics and Computer Science, St Petersburg University

Introduction

Overview

Longest common subsequence under string concatenation Ics("RUMPLESTILTSKIN", "STEAK") = 3 Ics("RUMPLESTILTSKIN", "STILTON") $=6$ $\rightsquigarrow \operatorname{Ics}($ "RUMPLESTILTSKIN", "STEAK" + "STILTON") = ?

Standard approach: dynamic programming
Divide-and-conquer as an alternative?

Introduction

Overview

Unit-Monge matrices under distance (a.k.a. tropical) multiplication
$\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \odot\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 2 & 3 & 3 & 4 & 5 \\ 0 & 0 & 1 & 2 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 2 & 3 & 3 & 4 & 5 \\ 0 & 1 & 1 & 2 & 2 & 3 & 4 \\ 0 & 1 & 1 & 2 & 2 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Permutation matrices under sticky multiplication

P

Q

R

Introduction

Overview

Sticky braids (a.k.a. Hecke words)

Introduction

Overview

Sticky braids (a.k.a. Hecke words)

Introduction

Overview

Sticky braids (a.k.a. Hecke words)

R

Introduction

Overview

Striking connection between these seemingly unrelated structures:

- behaviour of LCS length under string concatenation
- distance multiplication of unit-Monge matrices $=$ sticky multiplication of permutation matrices
- multiplication of sticky braids

These structures:

- are isomorphic monoids with a deep algebraic meaning
- admit a fast multiplication algorithm
- have far-reaching algorithmic applications
- have connections to fields from computational geometry to combinatorics and statistical mechanics
- have practical applications in bioinformatics

Introduction

Preliminaries

"Squared paper" notation: $\quad x^{-}=x-\frac{1}{2} \quad x^{+}=x+\frac{1}{2}$
Integers $i, j \in\{\ldots-2,-1,0,1,2, \ldots\}=[-\infty:+\infty] \supseteq[i, j]$
Half-integers $\hat{\imath}, \hat{\jmath} \in\left\{\ldots-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right\}=\langle-\infty:+\infty\rangle \supseteq\langle i, j\rangle$
Planar dominance:

- $(i, j) \ll\left(i^{\prime}, j^{\prime}\right)$ iff $i<i^{\prime}$ and $j<j^{\prime}$ ("above-left" relation)
- $(i, j) \gtrless\left(i^{\prime}, j^{\prime}\right)$ iff $i>i^{\prime}$ and $j<j^{\prime}$ ("below-left" relation)
where "above/below" follow matrix convention (not the Cartesian one!)

Introduction

Preliminaries

Strings (= sequences) over an alphabet of size σ
Substrings (contiguous) vs subsequences (not necessarily contiguous)
Prefixes, suffixes (special cases of substring)
Algorithmic problems: input strings a, b of length m, n respectively

Introduction

Preliminaries

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings

- global: whole string a vs whole string b
- semi-local: whole string a vs substrings in b (approximate matching); prefixes in a vs suffixes in b
- local: substrings in a vs substrings in b

Introduction

Preliminaries

String matching: finding an exact pattern in a string
String comparison: finding similar patterns in two strings

- global: whole string a vs whole string b
- semi-local: whole string a vs substrings in b (approximate matching); prefixes in a vs suffixes in b
- local: substrings in a vs substrings in b

We focus on semi-local comparison:

- fundamentally important for both global and local comparison
- exciting mathematical properties

Introduction

Preliminaries

Standard approach to string comparison: dynamic programming Our approach: the algebra of sticky braids

Can be used either iteratively, or recursively divide-and-conquer Divide-and-conquer is more efficient for:

- comparing dynamic strings (truncation, concatenation)
- comparing compressed strings (e.g. LZ-compression)
- comparing strings in parallel

The "conquer" step involves a magic "superglue" (efficient sticky braid multiplication)

Monge and unit-Monge matrices

Monge matrices
Dominance-sum matrix (a.k.a. distribution matrix) of matrix D : $D^{\Sigma}[i, j]=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D\langle i, j\rangle$

Monge and unit-Monge matrices

Monge matrices

Dominance-sum matrix (a.k.a. distribution matrix) of matrix D :
$D^{\Sigma}[i, j]=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D\langle i, j\rangle$
Cross-difference matrix (a.k.a. density matrix) of matrix E : $E^{\square}\langle\hat{\imath}, \hat{\jmath}\rangle=E\left[\hat{\imath}^{-}, \hat{\jmath}^{+}\right]-E\left[\hat{\imath}^{-}, \hat{\jmath}^{-}\right]-E\left[\hat{\imath}^{+}, \hat{\jmath}^{+}\right]+E\left[\hat{\imath}^{+}, \hat{\jmath}^{-}\right]$

Monge and unit-Monge matrices

Monge matrices

Dominance-sum matrix (a.k.a. distribution matrix) of matrix D :
$D^{\Sigma}[i, j]=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D\langle i, j\rangle$
Cross-difference matrix (a.k.a. density matrix) of matrix E : $E^{\square}\langle\hat{\imath}, \hat{\jmath}\rangle=E\left[\hat{\imath}^{-}, \hat{\jmath}^{+}\right]-E\left[\hat{\imath}^{-}, \hat{\jmath}^{-}\right]-E\left[\hat{\imath}^{+}, \hat{\jmath}^{+}\right]+E\left[\hat{\imath}^{+}, \hat{\jmath}^{-}\right]$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]^{\Sigma}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \quad\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]^{\square}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Monge and unit-Monge matrices

Monge matrices

Dominance-sum matrix (a.k.a. distribution matrix) of matrix D :
$D^{\Sigma}[i, j]=\sum_{\hat{\imath}>i, \hat{\jmath}<j} D\langle i, j\rangle$
Cross-difference matrix (a.k.a. density matrix) of matrix E : $E^{\square}\langle\hat{\imath}, \hat{\jmath}\rangle=E\left[\hat{\imath}^{-}, \hat{\jmath}^{+}\right]-E\left[\hat{\imath}^{-}, \hat{\jmath}^{-}\right]-E\left[\hat{\imath}^{+}, \hat{\jmath}^{+}\right]+E\left[\hat{\imath}^{+}, \hat{\jmath}^{-}\right]$
$\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]^{\Sigma}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \quad\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]^{\square}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left(D^{\Sigma}\right)^{\square}=D$ for all D
Matrix E is simple, if $\left(E^{\square}\right)^{\Sigma}=E$: only zeros in left column and bottom row

Monge and unit-Monge matrices

Monge matrices

Matrix E is Monge, if E^{\square} is nonnegative
Intuition: boundary-to-boundary distances in a (weighted) planar graph

G. Monge (1746-1818)

$$
E\left[i^{\prime}, j^{\prime}\right]+E\left[\left[^{\prime \prime}, j^{\prime \prime}\right] \leq E\left[i^{\prime}, j^{\prime \prime}\right]+E\left[i^{\prime \prime}, j^{\prime}\right]\right.
$$

Monge and unit-Monge matrices

Unit-Monge matrices
Permutation matrix: 0/1 matrix with exactly one nonzero per row/column Matrix E is unit-Monge, if E^{\square} is a permutation matrix Intuition: boundary-to-boundary distances in a grid-like graph (in particular, the LCS/alignment grid for a pair of strings)

Monge and unit-Monge matrices

Permutation matrix: 0/1 matrix with exactly one nonzero per row/column Matrix E is unit-Monge, if E^{\square} is a permutation matrix Intuition: boundary-to-boundary distances in a grid-like graph (in particular, the LCS/alignment grid for a pair of strings)
Simple unit-Monge matrix (a.k.a. "rank function"): P^{Σ}, where P is a permutation matrix
P used as implicit representation of P^{Σ}

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{\Sigma}=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Monge and unit-Monge matrices

Implicit unit-Monge matrices
Efficient P^{Σ} queries: range tree on nonzeros of P
[Bentley: 1980]

- binary search tree by i-coordinate
- under every node, binary search tree by j-coordinate
- empty rectangles not recorded

Monge and unit-Monge matrices

Implicit unit-Monge matrices
Efficient P^{Σ} queries: (contd.)
Every range tree node represents canonical rectangle (Cartesian product of canonical intervals), stores its nonzero count

Overall, $\leq n \log n$ canonical rectangles non-empty
P^{Σ} element query: \gtrless-dominance counting:

- \sum nonzeros \gtrless-dominated by query point
- $=\sum$ nonzero counts in $\leq \log ^{2} n$ disjoint canonical rectangles

Total size $O(n \log n)$, query time $O\left(\log ^{2} n\right)$

Monge and unit-Monge matrices

Implicit unit-Monge matrices
Efficient P^{Σ} queries: (contd.)
Every range tree node represents canonical rectangle (Cartesian product of canonical intervals), stores its nonzero count

Overall, $\leq n \log n$ canonical rectangles non-empty
P^{Σ} element query: \gtrless-dominance counting:

- \sum nonzeros \gtrless-dominated by query point
- $=\sum$ nonzero counts in $\leq \log ^{2} n$ disjoint canonical rectangles

Total size $O(n \log n)$, query time $O\left(\log ^{2} n\right)$
There are asymptotically more efficient (but less practical) data structures for range counting
Total size $O(n)$, query time $O\left(\frac{\log n}{\log \log n}\right)$
[JáJá+: 2004]
[Chan, Pǎtrașcu: 2010]

Distance multiplication

Distance multiplication

Distance semiring (a.k.a. (min, +)-semiring, tropical semiring)

- addition \oplus given by min
- multiplication \odot given by +

Matrix distance multiplication

$$
A \odot B=C \quad C[i, k]=\bigoplus_{j}(A[i, j] \odot B[j, k])=\min _{j}(A[i, j]+B[j, k])
$$

Intuition: shortest path distances in weighted graphs

Distance multiplication

Distance multiplication

Matrix classes closed under \odot-multiplication (for given n):

- general (integer, real) matrices \sim general weighted graphs
- Monge matrices \sim planar weighted graphs
- simple unit-Monge matrices \sim grid-like graphs

Intuition: gluing distances in a composition of graphs

Distance multiplication

Distance multiplication

Recall: permutation matrices $=$ implicit simple unit-Monge matrices
Matrix sticky multiplication (implicit distance multiplication)
$P \odot Q=R$ iff $P^{\Sigma} \odot Q^{\Sigma}=R^{\Sigma}$
The unit-Monge monoid \mathcal{T}_{n} :

- permutation matrices under \bullet
- simple unit-Monge matrices under \odot

Isomorphic to the Hecke monoid $H_{0}\left(\mathcal{S}_{n}\right)$

Distance multiplication

Sticky braids
$P \boxminus Q=R$ can be seen as multiplication of sticky braids

Distance multiplication

Sticky braids

$P \boxminus Q=R$ can be seen as multiplication of sticky braids

Distance multiplication

Sticky braids

$P \boxtimes Q=R$ can be seen as multiplication of sticky braids

Distance multiplication

Sticky braids

$P \boxminus Q=R$ can be seen as multiplication of sticky braids

Distance multiplication

Sticky braids

The classical braid group \mathcal{B}_{n} :

- $n-1$ generators $g_{1}, g_{2}, \ldots, g_{n-1}$ (elementary crossings)
- ∞ elements canonical projection $\mathcal{B}_{n} \rightarrow \mathcal{S}_{n}$

Inversion:
$g_{i} g_{i}^{-1}=1 \quad$ for all i

Far commutativity:
$g_{i} g_{j}=g_{j} g_{i} \quad j-i>1$

Braid relations:
$g_{i} g_{j} g_{i}=g_{j} g_{i} g_{j} \quad j-i=1$

Distance multiplication

Sticky braids

The sticky braid monoid \mathcal{T}_{n} :

- $n-1$ generators $g_{1}, g_{2}, \ldots, g_{n-1}$ (elementary crossings)
- n ! elements canonical bijection $\mathcal{T}_{n} \leftrightarrow \mathcal{S}_{n}$

Idempotence:
$g_{i}^{2}=g_{i} \quad$ for all i

Far commutativity:
$g_{i} g_{j}=g_{j} g_{i} \quad j-i>1$

Braid relations:
$g_{i} g_{j} g_{i}=g_{j} g_{i} g_{j} \quad j-i=1$

Distance multiplication

Sticky braids

Special elements in \mathcal{T}_{n}
(Denote $P^{R}=$ counterclockwise rotation of P)
Identity $I: I \boxtimes x=x$

$$
I=\bar{\square}=\left[\begin{array}{llll}
\bullet & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \bullet
\end{array}\right]
$$

Zero $I^{R}: I^{R} \boxtimes x=I^{R}$

$$
I^{R}=
$$

Zero divisors: $P^{R} \boxtimes P=P \boxtimes P^{R R R}=I^{R}$ for all P

Distance multiplication

Matrix sticky multiplication

Matrix sticky multiplication

Given permutation matrices P, Q, compute R, such that $P \boxtimes Q=R$

Distance multiplication

Matrix sticky multiplication

Matrix sticky multiplication

Given permutation matrices P, Q, compute R, such that $P \boxtimes Q=R$

Matrix distance and sticky multiplication: running time

type	time	
general \odot	$O\left(n^{3}\right)$	standard
	$O\left(\frac{n^{3}(\log \log n)^{3}}{\log ^{2} n}\right)$	[Chan: 2007]
Monge \odot	$O\left(n^{2}\right)$	via [Aggarwal+: 1987]
permutation \cdot	$O\left(n^{1.5}\right)$	$[\mathrm{T}: 2006]$
	$O(n \log n)$	$[\mathrm{T}: 2010]$

Distance multiplication

Matrix sticky multiplication

Distance multiplication

Matrix sticky multiplication

Distance multiplication

Matrix sticky multiplication

$P_{l o}, P_{h i}$

Distance multiplication

Matrix sticky multiplication

Distance multiplication

Matrix sticky multiplication

$P_{l o}, P_{h i}$

Distance multiplication

Matrix sticky multiplication

$P_{l o}, P_{h i}$

Distance multiplication

Matrix sticky multiplication

Distance multiplication

Matrix sticky multiplication

Distance multiplication

Matrix sticky multiplication

Distance multiplication

Matrix sticky multiplication

Matrix sticky multiplication: Steady Ant algorithm

$P \boxminus Q=R \quad R^{\Sigma}(i, k)=\min _{j}\left(P^{\Sigma}(i, j)+Q^{\Sigma}(j, k)\right)$
Divide: split range of $j \rightsquigarrow$ two recursive subproblems on $n / 2$-matrices
$P_{l o} \boxtimes Q_{l o}=R_{l o} \quad P_{h i} \boxtimes Q_{h i}=R_{h i}$
Each subproblem determines good nonzeros, remaining in main problem's solution Conquer: trace border path through range of i, k (bottom-left to top-right of R), separating good nonzeros of one subproblem from the other
Border path invariant: balance condition on bad nonzeros $\mid\left\{\right.$ nonzeros of $R_{h i}$ above-left $\}|=|\left\{\right.$ nonzeros of $R_{l o}$ below-right $\} \mid$
Step through border path: can maintain invariant in time $O(1)$ per step Keep all good nonzeros; replace bad nonzeros by fresh nonzeros on border path Conquer time $O(n) \quad$ Overall time $O(n \log n)$

Longest common subsequence LCS problem

a, b : strings of length m, n
The longest common subsequence (LCS) score:

- length of longest string that is a subsequence of both a and b
- in computational biology, unweighted alignment
- in ergodic theory, used to define the Feldman-Katok metric
- in software engineering, the diff tool
$\operatorname{lcs}($ "BAABCBCA", "CABCABA") $=$ length("ABCBA") $=5$

Longest common subsequence LCS problem

LCS problem
LCS score for a vs b

Longest common subsequence LCS problem

LCS problem

LCS score for a vs b

LCS: running time

$O(m n) \quad$ [Wagner, Fischer: 1974] $O\left(\frac{m n}{(\log n)^{c}}\right) \quad$ [Masek, Paterson: 1980] [Crochemore+: 2003] [Paterson, Dančík: 1994] [Bille, Farach-Colton: 2008] No $O\left((m n)^{1-\epsilon}\right) \quad \epsilon>0$; assuming SETH [Abboud+: 2015] [Backurs, Indyk: 2015]

Polylog's exponent c depends on alphabet size and computation model

Longest common subsequence LCS problem

LCS: classical dynamic programming (DP)

Iterate over cells in any <<-compatible order
Active cell update: time $O(1)$
Overall time $O(m n)$

Longest common subsequence LCS problem

LCS: DP, micro-block speedup (MBS) [MP: 1980; BF: 2008]

Iterate over cells in micro-blocks, in any \ll-compatible order
Micro-block size:

- $t=O(\log n)$ when $\sigma=O(1)$
- $t=O\left(\frac{\log n}{\log \log n}\right)$ otherwise

Micro-block interface:

- $O(t)$ characters, each $O(\log \sigma)$ bits, can be reduced to $O(\log t)$ bits
- $O(t)$ small integers, each $O(1)$ bits

Micro-block update: time $O(1)$, by precomputing all possible interfaces Overall time $O\left(\frac{m n}{\log ^{2} n}\right)$ when $\sigma=O(1), O\left(\frac{m n(\log \log n)^{2}}{\log ^{2} n}\right)$ otherwise

Longest common subsequence LCS problem

'Begin at the beginning,' the King said gravely, 'and go on till you come to the end: then stop.'
L. Carroll, Alice in Wonderland

Longest common subsequence LCS problem

'Begin at the beginning,' the King said gravely, 'and go on till you come to the end: then stop.'
L. Carroll, Alice in Wonderland

Dynamic programming: begins at empty strings, proceeds by appending characters, then stops

What about:

- prepending/deleting characters (dynamic LCS)
- concatenating strings (LCS on compressed strings; parallel LCS)
- taking substrings (= local alignment)

Longest common subsequence LCS problem

Running DP from both ends: better by $\times 2$, but still not good enough

Is dynamic programming strictly necessary to solve sequence alignment problems?

Eppstein+, Efficient algorithms for sequence analysis, 1991

Longest common subsequence Semi-local LCS problem

Semi-local LCS problem

LCS scores for a vs b :

- string-substring (whole a vs every substring of b)
- prefix-suffix (every prefix of a vs every suffix of b)
- suffix-prefix (every suffix of a vs every prefix of b)
- substring-string (every substring of a vs whole b)

Output scores can be represented implicitly

Longest common subsequence

Semi-local LCS problem

Semi-local LCS problem

LCS scores for a vs b :

- string-substring (whole a vs every substring of b)
- prefix-suffix (every prefix of a vs every suffix of b)
- suffix-prefix (every suffix of a vs every prefix of b)
- substring-string (every substring of a vs whole b)

Output scores can be represented implicitly

Longest common subsequence

Semi-local LCS problem

Semi-local LCS as maximum paths in the LCS grid

$$
\begin{aligned}
& a=\text { "BAABCBCA" } \\
& b=\text { "BAABCABCABACA" } \\
& b l u e=0(\text { skip }) \\
& r e d=1(\text { match }) \\
& \operatorname{lcs}(a, b\langle 4: 11\rangle)=5
\end{aligned}
$$

String-substring LCS: all highest-score top-to-bottom paths
Semi-local LCS: all highest-score boundary-to-boundary paths

Longest common subsequence

Semi-local LCS problem

Semi-local LCS: output representation and running time

size	query time		
$O\left(n^{2}\right)$	$O(1)$	string-substring	trivial
$O\left(m^{1 / 2} n\right)$	$O(\log n)$	string-substring	[Alves+: 2003]
$O(n)$	$O(n)$	string-substring	[Alves+: 2005]
$O(n \log n)$	$O\left(\log ^{2} n\right)$		[T: 2006]

... or any 2D orthogonal range counting data structure

running time

$\bar{O}\left(m n^{2}\right)=O(n \cdot m n) \quad$ string-substring repeated DP
$O(m n) \quad$ string-substring
$O(m n)$
$O\left(\frac{m n}{(\log n)^{O(1)}}\right)$
repeated DP
[Schmidt: 1998; Alves+: 2005]
[T: 2006]
[T: 2006-07]

Longest common subsequence

Semi-local LCS problem

LCS matrix H and LCS kernel P
$H[i, j]$: max number of matched characters for a vs substring $b\langle i: j\rangle$
$j-i-H[i, j]$: min number of unmatched characters
Properties of matrix $j-i-H[i, j]$:

- simple unit-Monge
- therefore, $=P^{\Sigma}$, where $P=-H^{\square}$ is a permutation matrix
P is the LCS kernel, giving an implicit representation of H
Range tree for P : memory $O(n \log n)$, query time $O\left(\log ^{2} n\right)$

Longest common subsequence

Semi-local LCS problem

LCS matrix H and LCS kernel P (only string-substring component shown)

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	5	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0

$a=$ "BAABCBCA"
$b=$ "BAABCABCABACA"
$H[i, j]= \begin{cases}\operatorname{lcs}(a, b\langle i: j\rangle) & i \leq j \\ j-i & i \geq j\end{cases}$
$H[0,13]=\operatorname{lcs}(a, b)=8$
$H[4,11]=\operatorname{Ics}(a, b\langle 4: 11\rangle)=5$

Longest common subsequence

Semi-local LCS problem

LCS matrix H and LCS kernel P (only string-substring component shown)

0	1	2	3	4	5	6	6	7	8	8	8	8	8
-1	0	1	2	3	4	5	5	6	7	7	7	7	7
-2	-1	0	1	2	3	4	4	5	6	6	6	6	7
-3	-2	-1	0	1	2	3	3	4	5	5	6	6	7
-4	-3	-2	-1	0	1	2	2	3	4	4	5	5	6
-5	-4	-3	-2	-1	0	1	2	3	4	4	5	5	6
-6	-5	-4	-3	-2	-1	0	1	2	3	3	4	4	5
-7	-6	-5	-4	-3	-2	-1	0	1	2	2	3	3	4
-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	3	4
-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0

$a=$ "BAABCBCA"
$b=$ "BAABCABCABACA"
$H[i, j]= \begin{cases}\operatorname{lcs}(a, b\langle i: j\rangle) & i \leq j \\ j-i & i \geq j\end{cases}$
blue | red: diff in $H=0 \mid 1$
green: $P\langle i, j\rangle=1$
$H[i, j]=j-i-P^{\Sigma}[i, j]$

Longest common subsequence

 Semi-local LCS problemLCS matrix H and LCS kernel P (only string-substring component shown)

$$
\begin{aligned}
& a=\text { "BAABCBCA" } \\
& b=\text { "BAABCABCABACA" } \\
& H[i, j]= \begin{cases}\operatorname{lcs}(a, b\langle i: j\rangle) & i \leq j \\
j-i & i \geq j\end{cases} \\
& H[4,11]=11-4-P^{\Sigma}[i, j]= \\
& 11-4-2=5
\end{aligned}
$$

Longest common subsequence

 Semi-local LCS problemLCS kernel as (reduced) sticky braid in LCS grid
 $a=$ "BAABCBCA" $b=$ "BAABCABCABACA" $H[4,11]=11-4-P^{\Sigma}[i, j]=$ $11-4-2=5$

String-substring LCS: $P\langle i, j\rangle=1$ iff strand i (top) $\rightsquigarrow j$ (bottom)
Each strand is a unit obstruction to LCS, if crossed left-to-right

Longest common subsequence

 Semi-local LCS problemLCS kernel as (reduced) sticky braid in LCS grid


```
a = "BAABCBCA"
b= "BAABCABCABACA"
```

$H[4,11]=11-4-P^{\Sigma}[i, j]=$
$11-4-2=5$

Semi-local LCS: $P\langle i, j\rangle=1$ iff strand $i($ top/left) $\rightsquigarrow j$ (bottom/right)
Embedded sticky braid: different strand embeddings possible
LCS kernel: braid with no particular embedding (one shown arbitrarily in pictures)

Longest common subsequence

 Semi-local LCS problemLCS kernel as (reduced) sticky braid in LCS grid
 $a=$ "BAABCBCA" $b=$ "BAABCABCABACA" $H[4,11]=11-4-P^{\Sigma}[i, j]=$ $11-4-2=5$

String-substring LCS: $P\langle i, j\rangle=1$ iff strand i (top) $\rightsquigarrow j$ (bottom)
Each strand is a unit obstruction to LCS, if crossed left-to-right

Longest common subsequence

 Semi-local LCS problemLCS kernel as (reduced) sticky braid in LCS grid
 $a=$ "BAABCBCA" $b=$ "BAABCABCABACA" $H[4,11]=11-4-P^{\Sigma}[i, j]=$ $11-4-2=5$

Semi-local LCS: $P\langle i, j\rangle=1$ iff strand i (top/left) $\rightsquigarrow j$ (bottom/right)
Different strand embeddings possible: embedded sticky braid LCS kernel: no particular embedding (but one still chosen in pictures)

Longest common subsequence

Semi-local LCS problem

Sticky braid: a highly symmetric object (Hecke word $\in H_{0}\left(S_{n}\right)$)
Can be built by assembling subbraids: divide-and-conquer
Flexible approach to local alignment, compressed approximate matching, parallel computation...

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by recursive combing

Longest common subsequence Algorithms for semi-local LCS

Semi-local LCS by recursive combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by recursive combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by recursive combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by recursive combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by recursive combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by recursive combing

Hierarchy of kernels, no particular embedding

Longest common subsequence

Algorithms for semi-local LCS

Semi-local LCS: recursive combing

Initialise uncombed sticky braid: mismatch cell = crossing
Recursion on LCS grid

- divide: partition either a or b
- obtain subproblem LCS kernels recursively
- conquer: LCS kernel composition by sticky multiplication

Recursion base: $m=n=1$
Overall time $O(m n)$

Correctness: by sticky braid relations

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Longest common subsequence

Algorithms for semi-local LCS

Semi-local LCS by iterative combing

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Forward embedded braid: kernel for every prefix of a vs every prefix of b Implicit prefix-substring and substring-prefix LCS

Longest common subsequence

 Algorithms for semi-local LCSSemi-local LCS by iterative combing

Backward embedded braid: kernel for every suffix of a vs every suffix of b Implicit suffix-substring and substring-suffix LCS

Longest common subsequence

Algorithms for semi-local LCS

Semi-local LCS: iterative combing

Initialise uncombed sticky braid: mismatch cell = crossing Iterate over cells in any <<-compatible order

- match cell: skip (keep strands uncrossed)
- mismatch cell: comb (uncross if strands crossed before)

Active cell update: time $O(1)$
Overall time $O(m n)$

Correctness: by sticky braid relations

Further string comparison

Periodic LCS

a: string of length $m \quad u$: string of length p

Periodic string-substring LCS problem

LCS scores: a vs every substring of $b=\ldots u u u \ldots=u^{\infty}$
Output scores can be represented implicitly

May assume that every character of a occurs in u (otherwise delete it)
Only need substrings in b of length $\leq m p$ (otherwise LCS score $=m$)
Periodic string-substring LCS: running time
$O(m n p)$
naive
$O(m p)$
[T: 2009]

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison

Periodic LCS

Periodic string-substring LCS by wraparound combing

Further string comparison
 Periodic LCS

Periodic string-substring LCS by wraparound combing

Forward preiodic braid: kernel for every prefix of a vs (infinite) b Implicit prefix-substring LCS

Further string comparison

Periodic LCS

Periodic string-substring LCS: Wraparound combing

Initialise uncombed sticky braid: mismatch cell = crossing
Iterate over cells in rows: row begins at match, wraps around at boundary

- match cell: skip (keep uncrossed)
- mismatch cell: comb (uncross if strands crossed before, possibly in a different period)

Active cell update: time $O(1)$
String-substring LCS score: count strands (with multiplicities, whenever substring covers multiple periods)
Overall time $O(m n)$

Further string comparison

Periodic LCS

u : string of length $p \quad v$: string of length q

Doubly-periodic string-substring LCS problem

LCS scores: $a=u u \ldots u=u^{k}$ vs every substring of $b=\ldots v v v \ldots=v^{\infty}$
Output scores can be represented implicitly
May assume that every character of u occurs in v (otherwise delete it)
Only need substrings in b of length $\leq k p q$ (otherwise LCS score $=k p$)
Doubly-periodic string-substring LCS: running time
$O\left(k^{2} p q\right)$
naive
$O(k p q)$
$O(p q+\log k \cdot q \log q)$
as single-periodic
[GT: 2023]

Further string comparison

Periodic LCS

Doubly-periodic string-substring LCS

Single-periodic string-substring LCS for u vs $b=v^{\infty}$: periodic LCS kernel Concatenate periods of $a=u^{k}$ recursively: $\log k$ steps
Each step: \boxtimes-multiplication of kernels
Sufficient to perform \circlearrowright-multiplication on finite subkernels of three (!) consecutive periods: then result correct on whole b

Overall time $O(p q+\log k \cdot q \log q)$

Further string comparison

Periodic LCS

Doubly-periodic LCS: set as Problem L in Petrozavodsk Programming Camp 2023

ICPC (International Collegiate Programming Contest): top annual event for competitive programming

Petrozavodsk Programming Camp: long-standing conference/experimental ground for ICPC problem setters

- high geographical coverage
- stands out by problems' complexity and originality
- used to propose/test new ideas and approaches

Further string comparison

Periodic LCS

Initial model solution: standard DP with optimisations $O\left(\max (p, q)^{3} \log (p k+q /)\right)$; solving up to $p \leq 50$ (time limit 20 s)

Refined in succesive versions using sticky braids
Version with cubic \square-mult via generic \odot-mult $O\left(p q+q^{3} \log k\right)$; solving $p \leq 50$ within 1 s; $p=500$ out of time Version with quadratic \odot-mult via Monge \odot-multiplication (Knuth) $O\left(p q+q^{2} \log k\right)$; solving $p \leq 500$ within $10 s ; p=1000$ out of time Set as challenge benchmark for contestants

Further string comparison

Periodic LCS

Version with quasilinear \circlearrowright-mult (Steady Ant): $O(p q+q \log q \log k)$
Version with recursion-free Steady Ant: another speedup by approx $\times 2$

Conclusions

Deep connection between classical combinatorial algorithms (LCS) and algebra (the Hecke monoid)

Powerful due to fast \square-multiplication (Steady Ant)
New application: doubly-periodic LCS
Periodic structures are important, occur frequently e.g. in bioinformatics
New highly engineered implementation
Tested in a competitive ICPC-style environment
Further work:

- general-purpose library for semi-local LCS
- further applications
- popularising the Hecke monoid in the competitive programming community

Conclusions

