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Our talk is devoted to the problem of factoring polynomials in the rings
of formal power series over a field. It is well–known that the rings of
formal power series over a field and the rings of polynomials over such
rings of formal power series are factorial

We suggest algorithms for factoring polynomials in the rings of multi-
variables formal power series over the ground field of zero–characteristic
and over an algebraic closure of this ground field. Also we construct algo-
rithms for factoring monic polynomials in one variable over these formal
power series rings. We give explicit estimates for the complexity of sug-
gested algorithms. These results are important for local investigation of
algebraic varieties from the algorithmic point of view.



More precisely, let be given a system of polynomial equations f1 = . . . =
fm = 0, where the polynomials f1, . . . , fm ∈ k[X1, . . . , Xn], k is a ground
field of zero–characteristic. Then one can decompose Z(f1, . . . , fm) near
the point (0, . . . , 0) into the union of algebroid varieties.

Namely, at first we decompose the set of zeroes Z(f1, . . . , fm) ⊂ An(k)
into the union of irreducible over k components. After that it is sufficient to
represent each constructed irreducible component as a union of algebroid
varieties. So we shall suppose without loss of generality that Z(f1, . . . , fm)
is an irreducible over k variety of dimension r. Then we construct a finite
dominant separable and birational morphism Z(f1, . . . , fm)→ Z(F (L1, . . . ,
Lr+1)), where L1, . . . , Lr+1 ∈ k[X1, . . . , Xn] are linearly independent linear
forms and F is a polynomial. Now to get the required algebroid compo-
nents defined over k (or k) it is sufficient to factor F in the rings of formal
power series k[[X1, . . . , Xn]] (or k[[X1, . . . , Xn]]).



Now let f ∈ k[X1, . . . , Xn, Z] be a polynomial and the leading coeffi-
cient with respect to Z of f is equal to 1. Our aim is to suggest algo-
rithms for factorization such a polynomial f in the rings k[[X1, . . . , Xn]][Z]
and k[[X1, . . . , Xn]][Z]. To our knowledge so far nobody has described
such algorithms for the case n > 2. As a direct consequence of the
suggested algorithms we get algorithms for factorization of polynomials
from k[X1, . . . , Xn] in the rings of formal power series k[[X1, . . . , Xn]] and
k[[X1, . . . , Xn]]. Again as far as we know no such algorithms have been
obtained for n > 3 (the case n = 1 is trivial and the case n = 2 can be
treated using the method of Newton’s broken lines, cf. [4]).

[4] Chistov A. L.: “Polynomial complexity of the Newton–Puiseux al-
gorithm”, In: International Symposium on Mathematical Foundations of
Computer Science 1986. Lecture Notes in Computer Science Vol. 233
Springer (1986) p. 247–255.



For any j > 1 the suggested algorithms can construct the j-th approx-
imation of all the objects at their output, see below for details. We give
explicit complexity bounds for the running time of the described algo-
rithms. These complexity bounds are polynomial in j and the size of the
input data if the number n of variables is fixed, say n = 2, 3, 4, . . ..

There is no easy solution of the considered problem of factorization of
a polynomial f ∈ k[X1, . . . , Xn, Z] using only Newton polygons or polyhe-
drons for n > 2. Of course the roots of the polynomial f belong to the
field of multiple formal fractional power series in X1, . . . , Xn, i.e. to the
union by all integers ν1, . . . , νn > 1 of the fields of multiple formal power
series

k((X
1/ν1
1 ))((X

1/ν2
2 )) . . . ((X1/ν2

n )).

For example, it is difficult to decide whether a root z of the polynomial f
from this field actually belongs to k[[X1, . . . , Xn]].



Our method is based on the results on normalization of algebraic va-
rieties and completions of their local rings. First of all it is an effective
normalization of algebraic varieties in zero–characteristic with the explicit
complexity bound. It was described by the author erlier, see [5], [6], [7].

[5] Chistov A. L.: “Effective Construction of a Nonsingular in Codi-
mension One Algebraic Variety over a Zero-Characteristic Ground Field”,
Zap. Nauchn. Semin. St-Petersburg. Otdel. Mat. Inst. Steklov (POMI)
387 (2011), p. 167–188 [English transl.: Journal of Mathematical Sciences
v. 179 (2011), p. 729–740].

[6] Chistov A. L.: “An overview of effective normalization of a non-
singular in codimension one projective algebraic variety”, Zap. Nauchn.
Semin. St-Petersburg. Otdel. Mat. Inst. Steklov (POMI) 373 (2009), p.
295–317 [English transl.: Journal of Mathematical Sciences v. 168 (2010),
p. 478–490].



[7] Chistov A. L.: “Effective normalization of a nonsingular in codi-
mension one projective algebraic variety”, Doklady Academii Nauk 427, no.
5 (2009), p. 605–608 (in Russian) [English transl.: Doklady Mathematics,
80:1 2009, p. 577–580].

Secondly we use the theorems related to analytical irreducibility and
analytical normality of normal algebraic varieties, see [10] v.II, Chapter 8
§13 Theorems 31–33.

[10] Zariski O., Samuel P.: “Commutative algebra”, v.I-II, Berlin New
York Springer–Verlag, 1958–1960.



Of course applying the algorithm from [3] we can assume in what follows
without loss of generality that f is irreducible in the ring k[X1, . . . , Xn, Z].

[3] Chistov A. L.: “Polynomial complexity algorithm for factoring poly-
nomials and constructing components of a variety in subexponential time”,
Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov (LOMI)
137 (1984), p. 124–188 (in Russian) [English transl.: J. Sov. Math. 34 (4)
(1986)].

We don’t consider the case of nonzero characteristic mainly since no
results similar to [5] have been obtained so far in this case. But, of course,
one can use another algorithms for normalization of algebraic varieties in
nonzero characteristic (there are no explicit estimates of complexity for
these algorithms in literature) and get an analog of our result in nonzero
characteristic but without a bound for the complexity of algorithms.



Denote by m the maximal ideal of the local ring Â. So the ideal m

is generated by the elements X1, . . . , Xn. Let z ∈ Â and N > 0 be an
integer. Then there is a unique polynomial z′ ∈ k[X1, . . . , Xn] of degree
degX1,...,Xn

z′ 6 N such that z − z′ ∈ mN+1. By definition put z#,N = z′.

We shall identify the set of elements of the factor ring Â/mN+1 with the
linear space of polynomials of degree at most N from k[X1, . . . , Xn]. Hence
now z#,N = z mod mN+1 for any z ∈ Â.

For a polynomial g ∈ Â[Z] one can define in a similar way the element
g#,N = g mod mN+1 ∈ k[X1, . . . , Xn, Z]. Hence degX1,...,Xn

g 6 N .

DEFINITION 1 We shall say that an algorithm constructs an element
z ∈ Â (respectively a polynomial g ∈ Â[Z]) if and only if for any given in-
teger N > 0 this algorithm can constructs the polynomial z#,N (respectively
g#,N).



Let us proceed to exact statements, for details see [8] Chistov A. L.:
“An algorithm for factoring polynomials in the ring of multivariable formal
power series in zero–characteristic”, Zap. Nauchn. Semin. St-Petersburg.
Otdel. Mat. Inst. Steklov (POMI) 517 (2022), p. 268–290 (in Russian)
[English transl.: to appear in Journal of Mathematical Sciences].

The field k is finitely generated over the field of rational numbers Q. We
suppose that k = Q(T1, . . . , Tl)[η], the elements T1, . . . , Tl are algebraically
independent over Q and the element η is algebraic (and separable) over
the field Q(T1, . . . , Tl), and the minimal polynomial ϕ ∈ Q(T1, . . . , Tl)[Z]
of the element η over the field Q(T1, . . . , Tl) is given.

We shall suppose that degT1,...,Tl,Z ϕ < d1, degT1,...,Tl f < d2,
degX1,...,Xn,Z f 6 d, l(ϕ) 6 M1, l(f) 6 M2 for some positive integers
d > 2, d1, d2, M1, M2. These degrees are defined in natural way.

Fo simplicity we assume l to be fixed, i.e. regard l as a constant.



THEOREM 1 Let f ∈ k[X1, . . . , Xn, Z] be an irreducible polynomial (in
this ring) with the leading coefficient lcZ f = 1. Then one can factor the
polynomial f in the ring k[[X1, . . . , Xn]][Z] (respectively k[[X1, . . . , Xn]][Z]).
More precisely, the following assertions hold true.

(i) One constructs the decomposition f =
∏

i∈I fi where all fi are irre-
ducible elements from the ring k[[X1, . . . , Xn]][Z] and all leading coef-
ficients lcZ fi = 1.

(ii) For every i ∈ I one construct an irreducible polynomial ϕi ∈ k[Y ] of
degree degY ϕi 6 d. Denote by {ηw}w∈Ji the family of all the roots from
the algebraic closure k of the polynomial ϕi (these roots are conjugated
over the field k).

(iii) For every i ∈ I one constructs the decomposition fi =
∏

w∈Ji fw where
all fw ∈ k[ηw][[X1, . . . , Xn]][Z] and all fw are irreducible elements from



the ring k[[X1, . . . , Xn]][Z] and the leading coefficients lcZ fw = 1. In
what follows we assume that for all i1, i2 ∈ I if i1 6= i2 then Ji1∩Ji2 = ∅.

(iv) For every integer j > 1 the running time of the algorithm for con-
structing all the polynomials fi mod mj, fw mod mj is polynomial in
jn, d2

nc

, d1, d2, M1, M2 for an absolute constant c > 0.

Note that for any fixed n, say for n = 2, 3, 4, . . ., the running time of the
algorithms from Theorem 1, see (iv), is polynomial in j, d, d1, d2, M1, M2,
i.e. this running time is polynomial in j and the size of the input data.

REMARK 1 Denote by δ the discriminant of the polynomial f with re-
spect to Z. Put r = ordX(δ). One can use Theorem 1 §3 Chapter IV
[1] about factroring polynomials over a field complete with respect to a
discrete valuation



[1] Borevich Z. I., Shafarevich I. R.: “Number theory”, New York
Academic Press 1966.

To prove Theorem 1 it is sufficient to construct all the polynomials f i =
fi mod mr+1 and fw = fw mod mr+1 and after that applying the cited
theorem from [1] obtain fi and fw, see Lemma 1 [8] for details.

Note also that recently we have found that it is not quite obvious that the
construction from the proof of this theorem in [1] gives a polynomial time
algorithm in our situation. Still it is true. Only minor modifications are
required in this construction and after that it becomes much more similar
to the lifting in the standard Hensel lemma. We are going to clarify this
question in the next paper.

But factually the proof of Theorem 1 is self–contained and one can man-
age also without Theorem 1 §3 Chapter IV [1].



COROLLARY 1 Under conditions of Theorem 1 put I ′′ = {i ∈ I :
fi(0, . . . , 0, 0) 6= 0} and I ′ = I \ I ′′. Set a =

∏
i∈I ′′ fi (so a is invertible in

Â[[Z]]). Then for every i ∈ I ′ the polynomial fi is an irreducible element
in the ring k[[X1, . . . , Xn, Z]]. For every i ∈ I ′, w ∈ Ji the polynomial fw is
an irreducible element in the ring k[[X1, . . . , Xn, Z]]. Hence f = a

∏
i∈I ′ fi

(respectively f = a
∏

i∈I ′, w∈Ji fw) is a decomposition into irreducibles of the

polynomial f in the ring k[[X1, . . . , Xn, Z]] (respectively k[[X1, . . . , Xn, Z]]).

PROOF This follows immediately from Corollary of Proposition 7 §3
Chapter VII [2] (it is related to the Weierstrass preparation theorem).

[2] Bourbaki N.:, “Algèbre commutative”, Paris 1961, 1964, 1965.

COROLLARY 2 Using Corollary 1 one can obtain an algorithm for fac-
toring any polynomial g ∈ k[X1, . . . , Xn] (here we assume that n > 2) in
the rings of formal power series k[[X1, . . . , Xn]] and k[[X1, . . . , Xn]].



REMARK 2 Notice that rings of formal power series over a field are inte-
grally closed. Denote by k((X1, . . . , Xn)) (respectively k((X1, . . . , Xn))) the
field of fractions of the ring k[[X1, . . . , Xn]] (respectively k[[X1, . . . , Xn]]).
Then in the case of arbitrary leading coefficient lcZ f ∈ k[X0, . . . , Xn] using
the standard changing of variables Y = (lcZ f)Z and applying Theorem 1
one can factor f over the field k((X1, . . . , Xn)) (respectively k((X1, . . . , Xn))).
But if lcZ f 6∈ k this does not give an algorithm for factoring f in the ring
k[[X1, . . . , Xn]] (respectively k[[X1, . . . , Xn]]).



About the proof of Theorem 1.
Denote by V ⊂ Pn+1(k) the affine algebraic variety defined over k over

k with the ring of regular functions k[X1, . . . , Xn, Z]/(f) = B. Put z =
Z mod f . We shall suppose without loss of generality that the polynomial f
is irreducible in the ring k[X1, . . . , Xn, Z]. Denote by V ′ the normalization
of the affine algebraic variety V . So V ′ is an affine algebraic variety. We
construct using our results about the normalization the generic point tyhe
integral closure B′ of the ring B. Namely, B′ = k[y1, . . . , yN ] where each
yv = (1/δ)

∑
06i<degZ f

yv,iz
i for some yv,i ∈ k[X1, . . . , Xn]. Additionally

assume that yv = Xv, 0 6 v 6 n, and yn+1 = z (so N > n+ 1).
Denote by π : V ′ → An(k) the morphism of affine algebraic varieties

corresponding the inclusion k[X1, . . . , Xn] ⊂ B′ of ring of regular functions
defined over k. Put x = (0, . . . , 0) ∈ An(k).



At first we construct an element ξ ∈ B′ such that ξ =
∑

n+16i6N aiyi for
some ai ∈ k, the field of fractions k(X1, . . . , Xn)[ξ] = k(X1, . . . , Xn)[z]
and the number of elements #ξ(π−1(x)) = #π−1(x). We find also a
minimal polynomial F ∈ k[X1, . . . , Xn, Q], lcQ F = 1, of the element ξ
over the field k(X1, . . . , Xn). Solving a linear system we represent z =
(1/∆)

∑
06i<degQ F

zj,iξ
i, where all zj,i ∈ k[X1, . . . , Xn] and ∆. is the dis-

criminant of the polynomial F with respect to Q.



After that we factor the polynomial F (0, . . . , 0, Q) ∈ k[Q] into the prod-
uct of pairwise relatively prime factors ψj, lcQ ψj = 1, over the field k. Now
using the standard Hensel lemma we can lift these factors till the factors
Ψj, lcQ Ψj = 1, of the polynomial F in the ring k[[X1, . . . , Xn]][Q]. By the
properties of ξ and the results from [10] these factors Ψj are irreducible
elements of the ring k[[X1, . . . , Xn]][Q]. Put αj = degQ Ψj.

Now for every w ∈ Ji, i ∈ I, there is a unique j such that

∆αjfw = ResQ

(
Ψj, ∆Z −

∑
06j<degQ F

zj,iQ
i
)
, (1)

where ResQ(. . .) denotes the resultant of the considered polynomials from
k[[X1, . . . , Xn]][Z,Q] with respect to Q. So we can compute the polynomi-
als ∆αjfw and after that fw with arbitrary precision, the details see in [8].
The case of factors fi irreducible in the ring k[[X1, . . . , Xn]][Z] is similar.



For more details, see Theorem 1 [8]. The complexity of the algorithm

from Theorem 1 is polynomial in the size of the input data, d2
nc

and jn

for a constant c > 0. At present we have analyzed the construction of this
algorithm thoroughly. We hope to improve it using the result of [9].

[9] Chow W.-L. “On the theorem of Bertini for local domains”, Pro-
ceedings of the National Academy of Sciences, (1958) v.44, #6 p. 580–584.

The complexity bound of the new version of this algorithm will be poly-
nomial in the size of the input data, dn

c

and jn (the constant c will be
specified).

Also we are going to prove other interesting results related to the subject
of this talk.



References

[1] Borevich Z. I., Shafarevich I. R.: “Number theory”, New York
Academic Press 1966.
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