
Investigation of the Stationary Motions of the Sys-
tem of Two Connected Bodies Moving along a Cir-
cular Orbit Using Polynomial Algebra Methods

Sergey A. Gutnik

Abstract. Polynomial algebra methods are used to determine the equilibrium
orientations of a system of two bodies connected by a spherical hinge that
moves on a circular orbit. Primary attention is given to the study of equilib-
rium orientations of the two-body system in the plane perpendicular to the
circular orbital plane. A method is proposed for transforming the system of
trigonometric equations determining the equilibria into a system of polyno-
mial equations, which in turn are reduced by calculating the resultant to a
single algebraic equation of degree 12 in one unknown. By applying symbolic
factorization, this algebraic equation is decomposed into three polynomial
factors, each specifying a certain class of equilibrium configurations. The do-
mains with an identical number of equilibrium positions are classified using
algebraic methods for constructing a discriminant hypersurface. Using the
proposed approach, it is shown that the system can have up to 48 equilibrium
orientations in the plane perpendicular to the circular orbit.

Introduction
In our work, we apply polynomial algebra methods to investigate the equilibrium
orientations of a system of two bodies (satellite and stabilizer) connected by a
spherical hinge that moves in a central Newtonian force field along a circular orbit.
Determining the equilibria for the system of bodies on a circular orbit is of practical
interest for designing composite gravitational orientation systems of satellites that
can stay on the orbit for a long time without energy consumption. The dynamics of
various composite schemes for satellite–stabilizer gravitational orientation systems
was discussed in detail in [1]. In [2], [3], [4] equilibrium orientations for the two-
body system in the orbital plane were found in the case where the spherical hinge
was positioned at the intersection of the principal central axes of inertia of the
satellite and stabilizer, as well as in the case where the hinge was positioned on
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the line of intersection between two planes formed by the principal central axes
of inertia of the satellite and stabilizer. In this work, we study the equilibrium
orientations of the two-body system in the plane perpendicular to the circular
orbital plane in the case when the hinge is positioned on the line of intersection
between two planes formed by the principal central axes of inertia of the satellite
and stabilizer..

1. Investigation of Equilibrium Orientations

We consider a system of two bodies connected by a spherical hinge that moves
along a circular orbit [4]. To write the corresponding equations of motion, we
introduce the following right-handed rectangular coordinate systems. The orbital
coordinate system is OXY Z. The OZ− axis is directed along the radius vector
that connects the Earth’s center of mass with the center of mass of the two-body
system O, the OX− axis is directed along the linear velocity vector of the center
of mass O, while the OY− axis is directed along the normal to the orbital plane.
The coordinate system of the ith body (i= 1, 2) is Oixiyizi, where the axis of these
coordinate systems are the principal central axes of inertia of the ith body. The
orientation of coordinate system Oixiyizi with respect to the orbital coordinate
system is determined using aircraft angles [1].

Suppose that (ai, bi, ci) are the coordinates of spherical hinge in the coordi-
nate system Oixiyizi; Ai, Bi, Ci are the principal central moments of inertia of the
each bodies; M = M1M2/(M1 + M2); Mi is the mass of the ith body.

Using the expressions of the kinetic energy of the two-body system and the
force function that determines the action of the Earth’s gravitational field on the
two-body system in the case where c1 = c2 = 0 and its equilibrium orientations
are in a plane perpendicular to the orbital plane (then, the coordinates of spherical
hinge in the coordinate system of each body are given by (ai, bi, 0)) the equations
of motion for this system we can written in the form of Lagrange equations of
the second kind [1]. Then from Lagrange equations we can obtain the stationary
trigonometric system which allows us to determine equilibrium orientations for the
system of two bodies connected by the spherical hinge in the orbital coordinate
system:(

(B1 −A1)/M
)

sinx1 cosx1 + (a1 sinx1 + b1 cosx1)(a1 cosx1 − b1 sinx1) −
−(a1 cosx1 − b1 sinx1)(a2 sinx2 + b2 cosx2) = 0, (1)(

(B2 −A2)/M
)

sinx2 cosx2 + (a2 sinx2 + b2 cosx2)(a2 cosx2 − b2 sinx2) −
−(a2 cosx2 − b2 sinx2)(a1 sinx1 + b1 cosx1) = 0,

where x1 and x2 are two of the aircraft angles.
The trigonometric system (1) cannot be solved analytically for two unknown

aircraft angles. To solve system (1), we use the universal approach whereby the
sines and cosines of angles xi are replaced by their tangents ti = tan(xi).
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As a result, we obtain from (1) the algebraic system of two equations in two
unknowns t1, t2

ā0t
3
1 + ā1t

2
1 + ā2t1 + ā3 = 0,

b̄0t
2
1 + b̄1t1 + b̄2 = 0, (2)

where āi, b̄i are polynomials depending on six system parameters.
By using the resultant approach to eliminate t1 from system (2) and sym-

bolic computations in Wolfram Mathematica 12.1 to find the determinant of
the resultant matrix, we obtain a twelfth-order algebraic equation in one un-
known t2, which upon factorization, turns into a product of three polynomials:
P (t2) = P1(t2)P2(t2)P3(t2) = 0. Here P1(t2), P2(t2) are second-order polynomials
and P3(t2) is an eighth-order polynomial, the coefficients of which are polynomials
in six system parameters.

By the definition of the resultant, each root of equation P (t2) = 0 corresponds
to one common root of system (2) . The algebraic equation obtained has the
even number of real roots, which does not exceed 12. By substituting real root
of algebraic equation P (t2) = 0 into the equations of system (2) , we find the
common root of these equations. It can be shown that four equilibrium solutions
of the original system correspond to each real root of equations (2).

Since the total number of real roots of P (t2) = 0 does not exceed 12, the
satellite–stabilizer system in the plane perpendicular to the orbital plane can have
no more than 48 equilibrium orientations in the orbital coordinate system. Us-
ing obtained equations for each set of system parameters, we can determine all
equilibrium orientations of the satellite–stabilizer system in the orbital coordinate
system.

To investigate the number of equilibrium solutions for the satellite–stabilizer
system, we define domains with equal numbers of real roots of P3(t2) = 0 in
the space of the six parameters. For this purpose, we construct a discriminant
hypersurface of this polynomial, which defines the boundary of the domains with
equal numbers of real roots.

Conclusion

The use of polynomial computer algebra methods allowed us to solve the classical
problem of space flight mechanics in a fairly simple form.
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