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Physical motivation

Classically, a particle in one dimension with its position q and mo-
mentum p is described by a phase space distribution PCl (q, p) . The
average of a function of the position and momentum A(q, p) can
then be expressed as

⟨A⟩Cl =

∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) PCl (q, p) .

A quantum mechanical particle is described by a density matrix
ϱ̂ and the average of a function of the position and momentum
operators Â(q̂, p̂) is

⟨A⟩QM = tr
(
Â ϱ̂

)
.

A quantum mechanical average can be expressed using a quasiprob-
ability distribution PQM(q, p) as

⟨A⟩QM =

∫ ∞

−∞
dq

∫ ∞

−∞
dp A(q, p) PQM(q, p) .
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Objective

Because of Heisenberg’s uncertainty principle, the function PQM(q, p)
has negative values for certain quantum states. Hence, it is not a
true probability density and is referred to as a quasiprobability dis-
tribution.

Due to this negativity property, quasiprobability distributions may
serve as a tool for understanding the interrelations between quantum
and classical statistical descriptions.

Aim of the talk:

To consider the Wigner quasiprobability distribution W (q, p) and,
specifying the notion of “classical states” as the states whose Wigner
function is non-negative everywhere in the phase space, to quantify
a state classicality.
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Wigner function

The Wigner quasiprobability distribution

W (ΩN) = tr [ϱ ∆(ΩN)]

is constructed from the density matrix (describing a quantum state)

ϱ ∈ PN = {X ∈ MN(C) | X = X † , X ≥ 0 , tr (X ) = 1}

and the Stratonovich-Weyl self-dual kernel

∆(ΩN) ∈ P∗
N = {X ∈ MN(C) | X = X † , tr (X ) = 1 , tr

(
X 2

)
= N} ,

defined over the symplectic manifold ΩN .
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Density matrix

A state of an N-level quantum system is given by the density
matrix

ϱ =
1

N
IN +

√
N − 1

2N
(α,λ) ,

whereα is (N2−1)-dimensional Bloch vector and λ = {λ1 , · · · , λN2−1 }
is su(N) algebra orthonormal Hermitian basis.

The singular value decomposition of the density matrix reads:

ϱ = U diag (r1, . . . , rN) U
† , U ∈ SU(N) ,

the spectrum {r1, . . . , rN} of the density matrix forms ∆N−1-simplex:

1 ≥ r1 ≥ · · · ≥ rN ≥ 0 ,
N∑
i=1

ri = 1 .
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For N = 2 (qubit) ∆1 : {1 ≥ r1 ≥ r2 ≥ 0 ,
∑2

i=1 ri = 1} .

For N = 3 (qutrit) ∆2 : {1 ≥ r1 ≥ r2 ≥ r3 ≥ 0 ,
∑3

i=1 ri = 1} .

For N = 4 (quatrit) ∆3 : {1 ≥ r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0 ,
∑4

i=1 ri = 1} .

N = 2 N = 3 N = 4
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Stratonovich-Weyl kernel

The Stratonovich-Weyl kernel is the following:

∆(ΩN) =
1

N
IN +

√
N2 − 1

2N

∑
λs∈K

µsλs ,

K ∈ su(N) is Cartan subalgebra, real coefficients
∑N

s=2 µ
2
s2−1 = 1 .

The SVD of the Stratonovich-Weyl kernel reads:

∆(ΩN) = V diag (π1, . . . , πN) V
† , V ∈ SU(N) .

Ordering of the spectrum {π1, . . . , πN} of the SW kernel cuts out the
moduli space of ∆(ΩN) in the form of a spherical polyhedron:

π1 ≥ · · · ≥ πN ,

N∑
i=1

πi = 1 ,
N∑
i=1

π2i = N .
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For κ =
√

N(N2−1)
2 the SW kernel spectrum π may be presented as:

πi =
1

N

(
1 +

√
2κ

N∑
s=i+1

µs2−1√
s (s − 1)

− κ

√
2 (i − 1)

i
µi2−1

)
.

The conventional parameterization by N − 2 spherical angles:

µ3 = sinψ1 · · · sinψN−2 ; . . . ;

µi2−1 = sinψ1 · · · sinψN−i cosψN−i+1 ; . . . ;

µN2−1 = cosψ1 , i = 2,N ,

where for π1 ≥ · · · ≥ πN the constraints on µi are:

µ3 ≥ 0 , µ(i+1)2−1 ≥
√

i − 1

i + 1
µi2−1 , i = 2,N − 1 .
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Moduli space

For N = 2 : π1 ≥ π2 ,
∑2

i=1 πi = 1 ,
∑2

i=1 πi = 2 , so:

π1 = (1 +
√
3)/2 , π2 = (1−

√
3)/2 .

For N = 3 : π1 ≥ π2 ≥ π3 ,
∑3

i=1 πi = 1 ,
∑3

i=1 πi = 3, so:

π2 = (1− π1 +
√
5 + 2π1 − 3π21)/2 , 1 ≤ π1 ≤ 5/3 ,

or, equivalently, for µ3 = sin ζ , µ8 = cos ζ : 0 ≤ ζ ≤ π/3 .
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For N = 4 : π1 ≥ π2 ≥ π3 ≥ π4 ,
∑4

i=1 πi = 1 ,
∑4

i=1 πi = 4, so for

µ3 = sinψ1 sinψ2 , µ8 = sinψ1 cosψ2 , µ15 = cosψ1 ,

where µ3 ≥ 0 , µ8 ≥ µ3√
3
, µ15 ≥ µ8√

2
, the moduli space reads:



{
ψ2 ∈

(
0, π3

]
,

0 < ψ1 ≤ arccot
(
cosψ2/

√
2
)
;{

ψ2 = 0 ,

0 < ψ1 ≤ arccot
(
1/
√
2
)
;

ψ1 = 0 .
Quatrit moduli space as the Möbius spher-

ical triangle (2, 3, 3) on a unit sphere.
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Wigner function positivity

A family of the Wigner functions:

W (ΩN) =
1

N

(
1 +

N2 − 1√
N + 1

(n,α)

)
,

vectors n = µ3n(3)+ . . .+µN2−1n(N2−1) , n(s2−1)
µ = 1

2 tr
(
Uλs2−1U

†λµ
)
.

For r ∈ ∆N ,π ∈ spec (∆(ΩN)) , the lower bound of Wigner function

W
(−)
N =

N∑
i=1

πi rN−i+1 = r1πN + . . .+ rNπ1

determines the WF positivity region.

At that: W
(−)
N ≤ W (ΩN) ≤ W

(+)
N , W

(+)
N =

∑N
i=1 πi ri .
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Qubit state

The state of a qubit is given by the density matrix

ϱ2 =
1

2
(I2 +α · σ) = U diag(r1, r2)U

† = U
1

2
(I2 + rσ3)U

† ,

where α = (α1, α2, α3) ∈ R3 is a Bloch vector, r = |α| , and σ is
the basis of su(2) algebra – the standart Pauli matrices.

Since ϱ ≥ 0 , the parameters space is
restricted to the unit ball (α2 ≤ 1), and
pure states describe the so-called Bloch
sphere (α2 = 1).

Qubit Wigner function lower bound: W
(−)
2 = r1π2 + r2π1 .
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Qutrit state

A generic qutrit state is given by the density matrix

ϱ3 =
1

3
(I3 +

√
3

8∑
ν=1

ανλν) = U diag(r1, r2, r3)U
† =

U
1

3
(I3 +

√
3

∑
i=3,8

ξiλi )U
† ,

where α is an 8-dimensional Bloch vector, λ = {λ1 , · · · , λ8} is
su(3) algebra basis – the Gell-Mann matrices, and coefficients ξ3, ξ8
are invariants under the adjoint SU(3) transformations of ϱ3 .

Qutrit Wigner function lower bound: W
(−)
3 = r1π3+ r2π2+ r3π1 .
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Quatrit state

A generic quatrit state is given by the density matrix

ϱ4 =
1

4
(I4 +

√
6

15∑
ν=1

ανλν) = U diag(r1, r2, r3, r4)U
† =

U
1

4
(I3 +

√
6

∑
i=3,8,15

ξiλi )U
† ,

where α is a 15-dimensional Bloch vector, λ = {λ1 , · · · , λ15} is
su(4) algebra basis, and coefficients ξ3, ξ8, ξ15 are invariants under
the adjoint SU(4) transformations of ϱ4 .

Quatrit WF lower bound: W
(−)
4 = r1π4 + r2π3 + r3π2 + r4π1 .
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State space PN

Unitary U(N) automorphism of the Hilbert space of an N-level quan-
tum system induces the adjoint SU(N)-action on state space PN :

g · ϱ = g ϱ g † , g ∈ SU(N) ,

which sets equivalence relations between elements of PN and gives
rise to its decomposition over the strata:

P[Hα] :=
{
x ∈ PN | Hx is conjugate to Hα

}
, PN =

⋃
orbit types

P[Hα] .

A subgroup Hx ⊂ SU(N) is the isotropy group of a point x ∈ PN ,

Hx = {g ∈ SU(N) | g · x = x} ,

and points x , y ∈ PN are said to be of the same type if their
stabilizers Hx and Hy are conjugate subgroups of SU(N) group.
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The “classical states” form the subset P
(+)
N ⊂ PN of states whose

Wigner function is non-negative everywhere over the phase space:

P
(+)
N = { ϱ ∈ PN | Wϱ(z) ≥ 0 , ∀z ∈ ΩN } .

The “classical states on a fixed stratum” PHα are defined as:

P
(+)
Hα

= P
(+)
N ∩PHα .

The unitary orbit space O[PN ] is the quotient space under the equiv-
alence relation imposed by the adjoint SU(N)-action on the state
space PN with quotient mapping π : PN −→ O[PN ] = PN/SU(N) .

The subset O[P
(+)
N ] = π[P

(+)
N ] = {π(x) | x ∈ P

(+)
N } represents the

image of P(+)
N under the quotient mapping π .
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Nonclassicality characteristics of states

Nonclassicality measures based on the violation of the Wigner func-
tion semi-positivity can be divided into different types:

1. (Nonclassicality distance) based on a distance of a state from the
“classical states”:

dϱ = inf
x∈P(+)

N

D(ϱ, x) =

√√√√ inf
xdiag∈O[P

(+)
N ]

N∑
i=1

(ri − xi )
2 ,

where states with positive Wigner functions are taken as the

reference “classical states”, P
(+)
N .

2. (Kenfack-Życzkowski indicator) based on the volume of a phase
space region where the Wigner function is negative:

δN =

∫
ΩN

dΩN

∣∣W (ΩN)
∣∣− 1 .
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Qubit nonclassicality distance and KZ-indicator

Qubit Wigner function: W (Ω2) =
1
2

(
1 +

√
3 (n,α)

)
.

Qubit nonclassicality distance for
Hilbert-Schmidt metric:

dϱ = θ[r− 1√
3
]
(

r√
2
− 1√

6

)
.

Qubit KZ-indicator:

δ2 = θ[r− 1√
3
]
(
3r2+1
2
√
3r

− 1
)
.
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Qutrit nonclassicality distance

Qutrit Wigner function: W (Ω3) =
1
3 (1 + 4 (n,α)) .

Qutrit nonclassicality distance for Hilbert-Schmidt metric:

dϱ =



0 , if ξ3, ξ8 ∈ △OAB ,

1
4

∣∣2ξ3 csc (ζ + π
6

)
+ 2ξ8 sec

(
ζ + π

6

)
− sec

(
2ζ − π

6

)∣∣ , if ξ3, ξ8 ∈ △ABS ,

√(
ξ3 −

√
3

8
sec(ζ)

)
2 +

(
ξ8 − sec(ζ)

8

)
2 , if ξ3, ξ8 ∈ △BST .

Qutrit ∆2-simplex with WF positivity boundary and nonclassicality distance (ζ = 0):
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Qutrit KZ-indicator

Qutrit KZ-indicator for moduli parameter ζ = 0 :

δ(1|23)(ξd | 0) =


0 , if ξ3, ξ8 ∈ △OAP ,

1

36

(2(
√
3ξ3 + ξ8)− 1)3

ξ3(ξ3 +
√
3ξ8)

, if ξ3, ξ8 ∈ △APC .

Qutrit KZ-indicator for moduli parameter ζ = π/3 :

δ(12|3)(ξd |
π

3
) =



0 , if ξ3, ξ8 ∈ △OSQ ,

1

18

(1− 4ξ8)
3(

ξ23 − 3ξ28
) , if ξ3, ξ8 ∈ □ARQS ,

1

36

(
2(
√
3 ξ3 + ξ8) + 1

)3
ξ3(ξ3 +

√
3 ξ8)

− 2 , if ξ3, ξ8 ∈ △CQR .
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Qutrit KZ-indicator for pure states:

δ3 =



(−1 + 4 cos(ζ))3

18(1 + 2 cos(2ζ))
, if 0 ≤ ζ ≤ 2 arctan

( √
3

2 +
√
5

)
,

(
4 sin

(
ζ + π

6

)
+ 1
)3

18
(
1− 2 cos

(
2
(
ζ + π

6

))) − 2 , if 2 arctan

( √
3

2 +
√
5

)
≤ ζ ≤

π

3
.

The KZ-indicator as function of moduli

parameter ζ for qutrit pure states.

Qutrit KZ-indicators δ
(0)
3 (red surface) and

δ
(π
3
)

3 (blue and yellow surfaces) as func-

tions of two invariants ξ3 and ξ8 .
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The global indicator of classicality

3. (Global indicator of classicality) as the relative volume of a sub-

space P
(+)
N ⊂ PN of the state space PN , consisting of states

whose Wigner functions are positive:

QN =
Volume(Classical States)

Volume(All States)
,

where the Riemannian volume is calculated with respect to the
measure dictated by the probability distribution function of an
ensemble.

For classical states on the fixed stratum PHα the Q−indicator of
classicality of the stratum is defined as:

QN [Hα] =
Volume(Classical States on P[Hα])

Volume(All States on P[Hα])
.
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The Hilbert-Schmidt ensemble of qudits

If the full rank density matrix has a spectrum of the form

r↓(ϱ) = {r1

k1︷ ︸︸ ︷
(1, . . . , 1) ; r2

k2︷ ︸︸ ︷
(1, . . . , 1) ; . . . ; rs

ks︷ ︸︸ ︷
(1, . . . , 1)}

with N distinct non-zero eigenvalues (k1 = k2 = · · · = kN = 1) ,
then the metric corresponding to the distance between two infinites-
imally close matrices ϱ−dϱ and ϱ+dϱ defines the standard Hilbert-
Schmidt ensemble of random full rank N−qudits.

The joint probability distribution of eigenvalues then reads:

PHS(r1, . . . , rN) ∝ δ(1−
N∑
j=1

rj)
N∏
j<k

(rj − rk)
2 .
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Degenerate Hilbert-Schmidt qudits

If the full rank density matrix spectrum has an arbitrary algebraic
degeneracy k = (k1, k2, . . . , ks) , then the joint probability distribu-
tion of eigenvalues is reduced to the following expression:

PHS
k1,...,ks (r1, . . . , rs) ∝ δ(1−

s∑
i=1

ki ri )
1...s∏
i<j

(ri − rj)
2kikj .

Wherein the angles in the singular value decomposition are dis-
tributed according to the Haar measure on the coset

U(N)/U(k1)× · · · × U(ks) .
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Qubit global indicator of classicality

Wigner function W (Ω2) ≥ 0 inside the Bloch ball of radius 1√
3
.

For the Hilbert-Schmidt ensemble of
qubits the PDF PHS(r) ∝ r2 , the
global Q-indicator of classicality:

Q2 =
1

3
√
3
≈ 0.19245 .

The probability Q(r) =
vol(B(r))∩O[P+

2
]

vol(B(r)) to find

a qubit state with WF≥ 0 within the Bloch ball of

radius r .
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Qutrit global indicator of classicality

Qutrit orbit space and its subspace of WF positivity are respectively

O[P3] :
{
r ∈ R2

∣∣ ∑3
i=1 ri = 1, 1 ≥ r1 ≥ r2 ≥ r3 ≥ 0

}
,

O[P
(+)
3 ] :

{
ζ ∈ [0, π/3]

∣∣ r3 ≥
r1(4 cos ζ−1)−r2(4 cos (ζ+π

3 )+1)
1+4 cos (ζ−π

3 )

}
.

Regular stratum Q-indicator:

Q3 =
20 cos2 (ζ − π/6) + 1

128 (4 cos2 (ζ − π/6)− 1)5
.

Degenerate stratum Q-indicator:

QHS(U(2)×U(1))

3 =
csc5

(
ζ + π

6

)
+ sec5(ζ)

1056
.
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The ratio R(ζ) =
Q

HS(U(2)×U(1))
3 (ζ)

Q3(ζ)
may serve as a certain mea-

sure of relation between the symmetry of a state and its classicality.

(a) Q3−indicators of a Hilbert-Schmidt qutrit as functions of ζ for the regular (gray

curve) and degenerate (blue curve) strata. The absolute minimum of both indicators is

attained at ζ = π/6 . (b) The ratio of degenerate to regular Q3−indicators.

Notation: the degenerate stratum P[S(U(2)×U(1))] has two pieces, F1|23 and F12|3 ,

associated with density matrices with degenerate eigenvalues r1 = r2 ̸= r3 and r1 ̸=
r2 = r3 of types k = (1, 2) and k = (2, 1) , respectively.
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Quatrit global indicator of classicality

In order to find the subset of classical states, one has to analyse the
intersections of a quatrit simplex – the tetrahedron OCAB with the
hyperplane π1 = (π1 − π4)r1 + (π1 − π3)r2 + (π1 − π2)r3 .

There are only two types of admissible cross-sections:

(a) triangles, if the intersection points belong to edges of the tetrahedron emanating

from vertex of maximally mixed states, π1 ≥ 1; (b) quadrilaterals, if an intersection

point lies outside the edge of the tetrahedron, 1
4
≤ π1 < 1 .
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Lasserre method for calculations

J.Lasserre (2021): integrating a polynomial of degree q on an ar-
bitrary simplex (with respect to Lebesgue measure) reduces to eval-
uating q homogeneous polynomials of degree j = 1, 2, . . . q each at
a unique point s j of the simplex.

Let p(x) =
∑q

j=0 pj(x) be real polynomial of degree q ; x = (x1, . . . , xn)

and pj(x) =
∑

|α|=j pαxα is homogeneous polynomial of degree j .

Then the integration over the canonical n−dimensional simplex Kn :∫
Kn

p(y)dy = vol(K )

p̂0 +

q∑
j=1

p̂j(s j)

 ,

where s j = (1,...,1)
j
√

(n+1)...(n+j)
and p̂(x) =

∑
α∈Nn pαα1! . . . αn! xα , with

α = (α1, . . . , αn) , is the associated “Bombieri” polynomial.

A. Khvedelidze, A. Torosyan Measures of qudits classicality



Objective and motivation Introduction Wigner function positivity and classicality Results and conjecture

For a quatrit (N = 4) : s12 =
(

6
15!

)1/12
(1, 1, 1) , and the regular

stratum Q-indicator Q4 ∝ volOP
OC

P
OA

P
OB

− θ[1− π1] volCP
OC

P
AC

P
BC

.

The degenerate stratum Q-indicator:

QHS(U(3)×U(1))

4 ∝


1

1+37

(
1 + 37

(1−4π4)7

)
, π4 ≤ 0 , 1

4 < π1 ≤ 1 ,

37

1+37

(
1

(4π1−1)7 +
1

(1−4π4)7

)
, π4 ≤ 0 , π1 > 1 .

Q1|23|4
4 ∝

{
0 , π1 + π2 ≤ 1 ,

1
(2π1+2π2−1)9 , π1 + π2 > 1 .

Q
HS(U(2)×U(1)2)

4 ∝


f1(π1, π2, π4) , π1 > 1 ,

f2(π1, π2) ,
1
4 < π1 < 1 , π2 >

1
4 ,

f3(π1, π3, π4) , π1 < 1 , π4 < 0 .

Notations: 1. S(U(3)×U(1)) : 1|2|34 and 12|3|4 of types k = (3, 1) and k = (1, 3) ,

2. 1|23|4 of type k = (2, 2) , 3. S(U(2) × U(1)2) : 1|234 , 12|34 and 123|4 of types

k = (2, 1, 1) , k = (1, 2, 1) and k = (1, 1, 2) .
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Q-indicators of a qubit-qubit system

Qubit-qubit global indi-

cators for stratum of
orbits with correspond-
ing isotropy groups: Q4 ,

QHS(U(3)×U(1))

4 , Q1|23|4
4 , Q

H
S(U(2)×U(1)2)

4

Slices of global indicators of classicality for different types of orbits
of a qubit-qubit system for Hilbert-Schmidt metric:

ψ2 = 0 ψ2 = π/6 ψ2 = π/3
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Results

Three measures of classicality constructed out of the quasiprobability
distributions were calculated for low-dimensional quantum systems:

Nonclassicality distance dϱ ,

Kenfack-Życzkowski indicator δN ,

Global indicator Q both for regular and degenerate stratum.

It is intriguing that the global indicator Q in Hilbert-Schmidt metric
as an integral over a simplex may be evaluated as a sum of certain
permanents at the vertices of O[P+

N ] .
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CONJECTURE: more symmetry – more classicality!

Let us arrange the isotropy groups Hα in ascending order, starting
from the maximal torus TN up to the whole group SU(N) a ,

TN = Hmin < H1 < · · · < Hmax = SU(N) .

Then

QN [TN ] < QN [H1] < · · · < QN [SU(N)] = 1 .

aIf H and K are isotropy subgroups of G , we define a partial ordering on
equivalence classes by writing (H) < (K) if H is G -conjugate to a subgroup of
K . This defines a partial ordering on the set of isotropy types.
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Hasse diagrams

Hasse diagram as a graphical representation of the relation of ele-
ments of a partially ordered set with an implied upward orientation:

N = 3 N = 4 N = 5

Thank you!
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