
Computing unimodular matrices
of power transformations

Alexander Bruno and Alijon Azimov

Abstract. An algorithm for solving the following problem is described. Let
m < n integer vectors in the n-dimensional real space be given. Their linear
span forms a linear subspace L in Rn. It is required to find a unimodular
matrix such that the linear transformation defined by it takes the subspace
L into a coordinate subspace. Computer programs implementing the pro-
posed algorithms and the power transforms for which they are designed are
described.

1. Introduction
Recall that a square matrix is said to be unimodular if all its elements are integers
and its determinant equals ±1. Its inverse is also unimodular.

We will write vectors as row vectors A = (a1, . . . , an),and [a] is the integer
part of the real number a.

Problem 1. Let m, (m < n) integer vectors A1, . . . , Am be given in the n-dimensional
real space Rn. Their linear span

L =

X =

m∑
j=1

λjAj , λj ∈ R, j = 1, . . . ,m

 (1)

forms a linear subspace in Rn. It is required to find a unimodular matrix α such
that the transformation Xα = Y takes L to the coordinate subspace

M = {Y : yn−l+1 = · · · = yn = 0} ,
where l = dimL.

In this talk, we give an algorithm for solving this problem and provide its
implementations in computer algebra systems [1]. If n = 2 and m = 1, then Prob-
lem 1 is solved by Eucledean algorithm or by continued fraction [2]. In Section 2, we
describe the Euler algorithm [3], which generalizes the Euclidean algorithm (i.e.,
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the continued fraction algorithm) to the n-dimensional integer vector. In Section 3
we describe a solution of Problem 1. In Section 4 we consider power transforma-
tions, for the calculation of the unimodular matrices of which, all these algorithms
are developed.

2. Euler’s algorithm and a generalization of continued fraction
Problem 2. Let an n-dimensional integer vector A = (a1, a2, . . . , an) be given. Find
an n-dimensional unimodular matrix α such that the vector Aα = C = (c1, . . . , cn)
contains only one nonzero component cn.

Euler proposed the following algorithm for solving this problem [3]. Suppose
for the time being that all components of vector A are nonzero. Using the per-
mutation Aα0 = (ã1, ã2, . . . , ãn) arrange its components in nondecreasing order
ãj ≤ ãj+1, j = 1, . . . , n− 1. Hereα0 is the unimodular matrix of the permutation.
Let ãk be the least number among ãj that is distinct from zero.

Let bj = [ãj/ãk], j = 1, . . . , n. Here b1 = · · · = bk−1 = 0, bk = 1. Make the
transformation

dj = ãj − bj ãk, 1 ≤ j ≤ n, j ̸= k, dk = α̃k. (2)
It is associated with the unimodular matrix α1 the diagonal of which consists of
ones, and the k-th row is

0, 0, . . . , 0, 1,−bk+1, . . . ,−bn, i.e. Ãα1 = D = (d1, . . . , dn).

Now arrange the components of the vector D in non-decreasing order using the uni-
modular permutation matrix β0 so that Dβ0 = D̃ =

(
0, . . . , 0, d̃k, . . . , d̃n

)
,where

d̃j ≤ d̃j+1.
Let d̃l be the least of d̃j , distinct from zero, and let ej =

[
d̃j/d̃l

]
, j = 1, . . . , l.

Make the transformation

fj = d̃j − ej d̃l, 1 ≤ j ≤ n, j ̸= l, fl = d̃l,

and soon. At each step, the maximum of the components of the vector decreases
and it is the n-th component. Therefore, in a finite number of steps we obtain a
vector with the only (last) nonzero component. This component equals the GCD
of all original components a1, . . . , an. Each step involves a permutation matrix and
a triangular matrix with the unit diagonal:

Aα0α1β0β1γ0γ1 . . . ω0ω1 = Aα = C = (0, . . . , 0, cn).

The matrix
α = α0α1β0β1γ0γ1 · · ·ω0ω1 (3)

is a solution of Problem 2.
If not all components aj of the original vector A have the same sign, then

we first arrange them in non-decreasing order of their moduli |ãj | ≤ |ãj+1| and set
bj = [|ãj | / |ãk|] sign ãj sign ãk.
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Let the given vector A be perpendicular to a linear variety. Then, after the
transformation using the matrix α, we obtain the vector in which all first n − 1
components are zero. Therefore, the last component of all vectors of the original
variety will be zero after this transformation.

Euler’s algorithm generalizes the continued fraction algorithm only for integer
vectors. Such a generalization for arbitrary real vectors was sought by all major
mathematicians of the 19th century, but without success. Such a generalization of
the continued fraction algorithm for the n-dimensional vector was proposed in [4].
It gives a sequence of best approximations, and it is periodic if all the components
of the original vector are roots of a polynomial of degree n with integer coefficients.

3. Solution to Problem 1
Let integer vectors

A1 = (a11, a12, . . . , a1n) ,

A2 = (a21, a22, . . . , a2n) ,

. . .

Am = (am1, am2, . . . , amn)

(4)

(m < n) and a linear space (1) be given.
First, we check if there are identical vectors among them. If there are any, we

discard duplicates and leave only one of them. Now, we are sure that all vectors (4)
are different. Apply Euler’s algorithm to the vector A, i.e., calculate the matrix
α such that A1α0 = C1 = cnEn, where cn is an integer and Ek is the k-th unit
vector.

Let Ajα0 = Cj = (cj1, . . . , cjn), j = 2, . . . ,m. Set A1
j = (cj1, . . . , cjn−1),

j = 2, . . . ,m. Apply Euler’s algorithm to the (n − 1)-dimensional vector A1
2 to

obtain A1
2α1 = C1

2 = (0, 0, . . . , c1n−1), where α1 is an (n − 1)-dimensional square
matrix. Let

A1
jα1 = C1

j = (c1j1, . . . , c
1
jn−1), j = 3, . . . ,m.

Apply Euler’s algorithm to the (n−2)-dimensional vector C1
3 , and so on. Finally, we

obtain the sequence of matrices α0, α1, . . . , αm−1 of decreasing size n, n−1, . . . , n−
m+ 1. Form the block matrices

βj =

(
αj 0
0 Ij+1

)
, j = 0, . . . , n−m,

of size n, where Ij+1 are the identity matrices of size j+1. Set γ = β0β1 · · ·βm−1.
Then

Ajγ = (0, 0, . . . , 0, wj,n−j+1, . . . , wj,n) = Wj , j = 1, . . . ,m.

The matrix γ is a solution to Problem 1.
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4. Power transformations
Let the polynomial

f(X) =
∑

fQX
Q, Q ∈ S, (5)

where X = (x1, . . . , xn) ∈ Rn or Cn, Q = (q1, . . . , qn) ∈ Zn, Q ≥ 0, fQ are constant
coefficients from R or C, S = S(f) is the support of f , be given. Let F be the
algebraic variety f(X) = 0 and the point X = X0 ∈ F .

If X0 is a simple point, i.e., if at least one derivative ∂f/∂xj is nonzero at X0

then the implicit function theorem implies that the variety F in the neighborhood
of X0 is described by the equation

∆xj = φ(∆x1, . . . ,∆xj−1,∆xj+1, . . . ,∆xn), (6)

where ∆xk = xk − x0
k and φ is a convergent series of its arguments.

If X0 is not a simple point, then, according to [5, 6] we can seek the branches
of the variety F , passing through X0 in the form of parametric expansions

∆xj = φj(ξ1, . . . , ξn−1), i = 1, . . . , n, (7)

where ξk are small parameters and φj — are converging power series. To this end
the convex hull Γ of the support S in the space is constructed. Then, Γ is the poly-
hedron the boundary ∂Γ of which consists of (generalized) faces Γ(d)

j of dimension
d, 0 ≤ d < n. Here j is the face index. Since all vertices Γ

(0)
j of Γ are integer, each

face Γ
(d)
j has n−d integer linearly independent normals N (d)

j1 , . . . , N
(d)
jn−d ∈ Rn

∗ i.e.,
normals belonging to the space Rn

∗ , which is dual of the space Rn.
In addition, each face Γ

(d)
j is associated with the boundary set

D
(d)
j =

{
Q ∈ S ∩ Γ

(d)
j

}
,

and the truncated sum is

f̂
(d)
j (X) =

∑
fQX

Q over Q ∈ D
(d)
j . (8)

Theorem 1 ([5, Corollary in Chapter II, § 3], [6, Theorem 3.1]). For the face Γ
(d)
j

there exists a power transformation

lnY = lnX · α,
where lnY = (ln y1, . . . , ln yn) and lnX = (lnx1, . . . , lnxn) with a unimodular
matrix α, that takes the truncated sum (8) to a polynomial g of d variables, i.e.,

f̂
(d)
j (X) = Y T g(y1, . . . , yd), (9)

where T = (t1, . . . , tn) ∈ Zn.

However in [5, 6], it was not pointed out how the unimodular matrix α can
be calculated. This is done in the current paper. In [7, Part I, Ch. I, Section 1.9]
it was made for n = 2. In [1, 8] we describe software of these algorithms. It will
be considered in our talk.
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