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Abstract

An algorithm for solving the following problem is described. Let 𝑚 < 𝑛
integer vectors in the 𝑛-dimensional real space be given. Their linear span
forms a linear subspace 𝐿 in R𝑛. It is required to find a unimodular matrix
such that the linear transformation defined by it takes the subspace 𝐿 into
a coordinate subspace. Computer programs, implementing the proposed
algorithms, and the power transformations, for which they are designed,
are described.



1. Introduction

2. Euclidean algorithm and continued fraction

3. Euler’s algorithm and a generalization of continued
fraction

4. Solution to Problem 1

5. Programs for calculating continued fractions

6. Implementation of Euler’s algorithm and solution of
Problem 1

7. Power transformations



1. Introduction (1)

Recall that a square matrix is said to be unimodular if all its elements
are integers and its determinant equals ±1. Its inverse and transpose
are also unimodular.

We will write vectors as row vectors 𝐴 = (𝑎1, . . . , 𝑎𝑛),and [𝑎] is the
integer part of the real number 𝑎.



1. Introduction (2)

Problem 1
Let 𝑚, (𝑚 < 𝑛) integer vectors 𝐴1, . . . , 𝐴𝑚 be given in the 𝑛-
dimensional real space R𝑛. Their linear span

𝐿 =

⎧⎨⎩𝑋 =

𝑚∑︁
𝑗=1

𝜆𝑗𝐴𝑗 , 𝜆𝑗 ∈ R, 𝑗 = 1, . . . ,𝑚

⎫⎬⎭ (1)

forms a linear subspace in R𝑛. It is required to find a unimodular
matrix 𝛼 such that the transformation 𝑋𝛼 = 𝑌 takes 𝐿 to the
coordinate subspace

𝑀 = {𝑌 : 𝑦1 = · · · = 𝑦𝑛−𝑙 = 0} ,

where 𝑙 = dim𝐿.



1. Introduction (3)

In this talk, we give an algorithm for solving this problem and pro-
vide its implementations in computer algebra systems [Bruno, Azi-
mov, 2023]. This is a generalization of the continued fraction algo-
rithm [Khinchin, 1997], which we recall in Section 2. In Section 3,
we describe the Euler algorithm [Euler, 1785], which generalizes the
Euclidean algorithm (i.e., the continued fraction algorithm) to the
𝑛-dimensional integer vector. In Section 4 we describe a solution
of Problem 1 and in Sections 5 and 6, we present programs corre-
sponding to Sections 2, 3, and 4. In Section 7 we consider power
transformations, for the calculation of the unimodular matrices of
which, all these algorithms are developed.
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2. Euclidean algorithm and continued fraction (1)

Problem 2
Let 𝑎1 and 𝑎2 two positive integers. We want to find their greatest
common divisor (GCD).



2. Euclidean algorithm and continued fraction (2)

For that Euclidean algorithm can be used.
Let 𝑎1 ⩾ 𝑎2, divide 𝑎1 by 𝑎2 with remainder:

𝑎1 = 𝑏1 · 𝑎2 + 𝑎3, (2)

where 𝑏1 = [𝑎1/𝑎2] and 𝑎3 are integers and 0 ⩽ 𝑎3 < 𝑎2.
∙ If 𝑎3 = 0, then the GCD is 𝑎2.
∙ If 𝑎3 ̸= 0 , then we divide 𝑎2 by 𝑎3 with remainder:

𝑎2 = 𝑏2 · 𝑎3 + 𝑎4, (3)

where 𝑏2 = [𝑎2/𝑎3] and 0 ⩽ 𝑎4 < 𝑎3.
∙ If 𝑎4 = 0, then the GCD is 𝑎3.
∙ If 𝑎4 ̸= 0, then we continue this procedure until we obtain the

zero remainder 𝑎𝑘+1 = 0.



2. Euclidean algorithm and continued fraction (3)

Then, the GCD is 𝑎𝑘. This procedure can be written as the continued
fraction

𝑎1
𝑎2

= 𝑏1 +
1

𝑏2 +
1

𝑏3 +
1

. . .+
1

𝑏𝑘−1

. (4)

This procedure is applicable to any real number 𝛽 and gives, generally
speaking, an infinite expansion. It is finite only for rational numbers
𝛽 = 𝑎1/𝑎2 For quadratic irrationalities 𝛽, it is periodic [khinchin].
If we discard in the continued fraction (4) the tail starting with 𝑏𝑙+1

and collapse the resulting continued fraction into a rational number,
then it is called a convergent.



2. Euclidean algorithm and continued fraction (4)

Problem 3
Let 𝑎1 and 𝑎2 be two positive integers. It is required to find a
unimodular matrix 𝛼 such that (𝑎1, 𝑎2)𝛼 = (𝑎𝑘,0) or (0, 𝑎𝑘), where
𝑎𝑘 > 0 is an integer.

Division with remainder (2) can be written as multiplication by

the matrix (𝑎1, 𝑎2)

(︂
1 0

−𝑏1 1

)︂
= (𝑎3, 𝑎2) or (𝑎1, 𝑎2)𝛽1 = (𝑎3, 𝑎2),

where 𝛽1 =

(︂
1 0

−𝑏1 1

)︂
, and division with remainder (3) is repre-

sented by (𝑎3, 𝑎2)

(︂
1 −𝑏2
0 1

)︂
= (𝑎3, 𝑎4) or (𝑎3, 𝑎2)𝛽2 = (𝑎3, 𝑎4),

where 𝛽2 =

(︂
1 −𝑏2
0 1

)︂
.



2. Euclidean algorithm and continued fraction (5)

The last step of the Euclidean algorithm is either

(𝑎𝑘, 𝑎𝑘−1)

(︂
1 −𝑏𝑘−1

0 1

)︂
= (𝑎𝑘,0)

or

(𝑎𝑘−1, 𝑎𝑘)

(︂
1 0

−𝑏𝑘−1 1

)︂
= (0, 𝑎𝑘).



2. Euclidean algorithm and continued fraction (6)

Therefore, the desired matrix is

𝛼 = 𝛽1𝛽2 · · ·𝛽𝑘−1,

where

𝛽𝑗 =

(︂
1 0

−𝑏𝑗 1

)︂
, (5)

if 𝑗 is odd, and

𝛽𝑗 =

(︂
1 −𝑏𝑗
0 1

)︂
, (6)

if 𝑗 is even.

Since all matrices 𝛽𝑗 are unimodular, their product 𝛼 is unimodular
as well, and it provides a solution to Problem 3.



2. Euclidean algorithm and continued fraction (7)

Note that
𝛼−1 = 𝛽−1

𝑘−1𝛽
−1
𝑘−2 · · ·𝛽

−1
2 𝛽−1

1

and, according to (5) and (6) 𝛽−1
𝑗 =

(︂
1 0
𝑏𝑗 1

)︂
or

(︂
1 𝑏𝑗
0 1

)︂
, i.e. it

consists of nonnegative elements. Hence, all elements in the matrix
𝛼−1 are nonnegative.



Example (1)

Let 𝑎1 = 17 and 𝑎2 = 5.

Then 𝑏1 = [17/5] = 3, 𝑎3 = 2, 𝛽1 =
(︂

1 0
−3 1

)︂
,

𝑏2 =

[︂
5

2

]︂
= 2, 𝑎4 = 1, 𝛽2 =

(︂
1 −2
0 1

)︂
,

𝑏3 =

[︂
2

1

]︂
= 2, 𝑎5 = 0, 𝛽3 =

(︂
1 0
−2 1

)︂

The matrix 𝛼 = 𝛽1𝛽2𝛽3 =

(︂
1 0
−3 1

)︂(︂
1 −2
0 1

)︂(︂
1 0
−2 1

)︂
=(︂

5 −2
−17 7

)︂
.



Example (2)

Expand the ratio in continued fraction

17

5
= 3 +

1

2 +
1

2

,

and find that the last convergent is 3 + 1/2 = 7/2. Therefore, the
second column in the matrix 𝛼 consists of the numbers −2 and 7.



Euclidean algorithm and continued fraction
(cont) (1)

Here we described the solution to Problem 3 for the case 𝑎1, 𝑎2 > 0.
If 𝑎1, 𝑎2 < 0, then we should take the matrix 𝛼 for the vector
(−𝑎1,−𝑎2).

If 𝑎1 · 𝑎2 < 0, then we should take the matrix 𝛼 =

(︂
𝛼11 𝛼12

𝛼21 𝛼22

)︂
for

the vector (|𝑎1| , |𝑎2|). Then, the matrix

𝛼 =

(︂
𝛼11 sign 𝑎1 𝛼12 sign 𝑎2
𝛼21 sign 𝑎1 𝛼22 sign 𝑎2

)︂
is unimodular and makes one of the coordinates of the vector (𝑎1, 𝑎2)
equal to zero.



Euclidean algorithm and continued fraction
(cont) (2)

Here we assumed that |𝑎1| ⩾ |𝑎2|. Otherwise, we should first rear-
range the coordinates:

(𝑎1, 𝑎2)

(︂
0 1
1 0

)︂
= (𝑎2, 𝑎1) .

A similar exposition can be found in [Bruno, 1989, Part I, Ch. I, § 1,
Sect. 1.9].
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3. Euler’s algorithm and a generalization of
continued fraction (1)

Problem 4
Let an 𝑛-dimensional integer vector 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) be given.
Find an 𝑛-dimensional unimodular matrix 𝛼 such that the vector
𝐴𝛼 = 𝐶 = (𝑐1, . . . , 𝑐𝑛) contains only one nonzero component 𝑐𝑛.

Euler proposed the following algorithm for solving this problem [Euler,
1785]. Suppose for the time being that all components of vector 𝐴
are nonnegative.

Using the permutation 𝐴𝛼0 = (̃︀𝑎1,̃︀𝑎2, . . . ,̃︀𝑎𝑛) arrange its compo-
nents in nondecreasing order ̃︀𝑎𝑗 ≤ ̃︀𝑎𝑗+1, 𝑗 = 1, . . . , 𝑛− 1. Here 𝛼0

is the unimodular matrix of the permutation.

Let ̃︀𝑎𝑘 be the least number among ̃︀𝑎𝑗 that is distinct from zero.



3. Euler’s algorithm and a generalization of
continued fraction (2)

Let 𝑏𝑗 = [̃︀𝑎𝑗/̃︀𝑎𝑘], 𝑗 = 1, . . . , 𝑛. Here 𝑏1 = · · · = 𝑏𝑘−1 = 0, 𝑏𝑘 = 1.
Make the transformation

𝑑𝑗 = ̃︀𝑎𝑗 − 𝑏𝑗̃︀𝑎𝑘, 1 ⩽ 𝑗 ⩽ 𝑛, 𝑗 ̸= 𝑘, 𝑑𝑘 = ̃︀𝑎𝑘.
It is associated with the unimodular matrix 𝛼1, the diagonal of which
consists of ones, and the 𝑘-th row is

0,0, . . . ,0,1,−𝑏𝑘+1, . . . ,−𝑏𝑛, i.e. 𝐴𝛼1 = 𝐷 = (𝑑1, . . . , 𝑑𝑛).

Now arrange the components of the vector 𝐷 in non-decreasing order
using the unimodular permutation matrix 𝛽0 so that 𝐷𝛽0 = �̃� =(︁
0, . . . ,0, ̃︀𝑑𝑘, . . . , ̃︀𝑑𝑛)︁, where ̃︀𝑑𝑗 ⩽ ̃︀𝑑𝑗+1.



3. Euler’s algorithm and a generalization of
continued fraction (3)

Let ̃︀𝑑𝑙 be the least of ̃︀𝑑𝑗 , distinct from zero, and let 𝑒𝑗 =
[︁̃︀𝑑𝑗/̃︀𝑑𝑙]︁,

𝑗 = 1, . . . , 𝑛. Make the transformation

𝑓𝑗 = ̃︀𝑑𝑗 − 𝑒𝑗 ̃︀𝑑𝑙, 1 ⩽ 𝑗 ⩽ 𝑛, 𝑗 ̸= 𝑙, 𝑓𝑙 = ̃︀𝑑𝑙,
and so on.

At each step, the maximum of the components of the vector de-
creases and it is the 𝑛-th component. Therefore, in a finite number
of steps we obtain a vector with the only (last) nonzero compo-
nent. This component equals the GCD of all original components
𝑎1, . . . , 𝑎𝑛.



3. Euler’s algorithm and a generalization of
continued fraction (4)

Each step involves a permutation matrix and a triangular matrix with
the unit diagonal:

𝐴𝛼0𝛼1𝛽0𝛽1𝛾0𝛾1 . . . 𝜔0𝜔1 = 𝐴𝛼 = 𝐶 = (0, . . . ,0, 𝑐𝑛).

The matrix
𝛼 = 𝛼0𝛼1𝛽0𝛽1𝛾0𝛾1 · · ·𝜔0𝜔1

is a solution of Problem 4.

If not all components 𝑎𝑗 of the original vector 𝐴 have the same sign,
then we first arrange them in non-decreasing order of their moduli
|̃︀𝑎𝑗 | ⩽ |̃︀𝑎𝑗+1| and set 𝑏𝑗 = [|̃︀𝑎𝑗 | / |̃︀𝑎𝑘|] sigñ︀𝑎𝑗 sign ̃︀𝑎𝑘.



3. Euler’s algorithm and a generalization of
continued fraction (5)

Euler’s algorithm generalizes the continued fraction algorithm only
for integer vectors. Such a generalization for arbitrary real vectors
was sought by all major mathematicians of the 19th century, but
without success.

Such a generalization of the continued fraction algorithm for the
𝑛-dimensional vector was proposed in [Bruno, 2019]. It gives a se-
quence of best approximations, and it is periodic if all the components
of the original vector are roots of a polynomial of degree 𝑛 with in-
teger coefficients.
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4. Solution to Problem 1 (1)

Let integer vectors

𝐴1 = (𝑎11, 𝑎12, . . . , 𝑎1𝑛) ,

𝐴2 = (𝑎21, 𝑎22, . . . , 𝑎2𝑛) ,

. . .

𝐴𝑚 = (𝑎𝑚1, 𝑎𝑚2, . . . , 𝑎𝑚𝑛)

(7)

(𝑚 < 𝑛) and the linear space (1) be given.

First, we check if there are identical vectors among them. If there are
any, we discard duplicates and leave only one of them. Now, we are
sure that all vectors (7) are different. Apply Euler’s algorithm to the
vector 𝐴1, i.e., calculate the matrix 𝛼 such that 𝐴1𝛼0 = 𝐶1 = 𝑐𝑛𝐸𝑛,
where 𝑐𝑛 is an integer and 𝐸𝑘 is the 𝑘-th unit vector.



4. Solution to Problem 1 (2)

Let 𝐴𝑗𝛼0 = 𝐶𝑗 = (𝑐𝑗1, . . . , 𝑐𝑗𝑛), 𝑗 = 2, . . . ,𝑚. Set 𝐴1
𝑗 =

(𝑐𝑗1, . . . , 𝑐𝑗𝑛−1), 𝑗 = 2, . . . ,𝑚. Apply Euler’s algorithm to the (𝑛−
1)-dimensional vector 𝐴1

2 to obtain 𝐴1
2𝛼1 = 𝐶1

2 = (0,0, . . . , 𝑐1𝑛−1),
where 𝛼1 is an (𝑛− 1)-dimensional square matrix. Let

𝐴1
𝑗𝛼1 = 𝐶1

𝑗 = (𝑐1𝑗1, . . . , 𝑐
1
𝑗𝑛−1), 𝑗 = 3, . . . ,𝑚.

Apply Euler’s algorithm to the (𝑛 − 2)-dimensional vector 𝐶1
3 , and

so on. Finally, we obtain the sequence of matrices 𝛼0, 𝛼1, . . . , 𝛼𝑚−1

of decreasing size 𝑛, 𝑛− 1, . . . , 𝑛−𝑚+ 1.



4. Solution to Problem 1 (3)

Form the block matrices

𝛽𝑗 =

(︂
𝛼𝑗 0
0 𝐼𝑗+1

)︂
, 𝑗 = 0, . . . , 𝑛−𝑚,

of size 𝑛, where 𝐼𝑗+1 are the identity matrices of size 𝑗 + 1. Set
𝛾 = 𝛽0𝛽1 · · ·𝛽𝑚−1.

Then

𝐴𝑗𝛾 = (0,0, . . . ,0, 𝑤𝑗,𝑛−𝑗+1, . . . , 𝑤𝑗,𝑛) = 𝑊𝑗 , 𝑗 = 1, . . . ,𝑚.

The matrix 𝛾 is a solution to Problem 1.
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5. Programs for calculating continued fractions
(1)

Algorithms for calculating continued fractions are implemented in
many computer algebra systems. Here we describe the basic proce-
dures in two computer algebra systems: in the proprietary system
Maple and in the free system sympy.
The package NumberTheory in Maple [Thompson, 2016] makes it
possible to expand rational, algebraic and transcendental numbers,
and polynomials and elementary functions of one variable in contin-
ued fractions.
In sympy [Meurer (et al.), 2017], this functionality is implemented
only for rational numbers or quadratic irrationalities. If we need to
work with continued fractions for other irrationalities and transcen-
dental numbers, the free system Sage [The Sage Developers, 2022]
should be used.



5. Programs for calculating continued fractions
(2)

Three basic procedures are sufficient for working with rational num-
bers in the form of continued fractions:

(1) transformation into continued fraction;
(2) obtaining elements of the continued fraction;
(3) obtaining rational approximations.

In Maple, these procedures are implemented by
ContinuedFraction, Term, and Convergent.

In sympy, procedures (1) and (2) are implemented
by continued_fraction, and procedure (3) by
continued_fraction_convergents.
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6. Implementation of Euler’s algorithm and
solution of Problem 1 (1)

To implement Euler’s algorithm described in Section 3, we developed
a set of Maple procedures, which are presented below together with
their descriptions. Note that an integer vector in Maple can be
represented in two forms:

∙ a list of numbers in square brackets;
∙ a row vector (or column vector) of the package
LinearAlgebra (Vector[row] or Vector[column],
respectively).

If the procedure name contains digit 2, then the input integer vector
may be specified in any of these forms.



6. Implementation of Euler’s algorithm and
solution of Problem 1 (2)

The procedure MakePermute2:
Given the vector 𝐴, it constructs the permutation matrix. This pro-
cedure produces the ordered vector and the permutation matrix 𝛼0.
The order in which the components of the vector are arranged is
specified by the parameter sorting; by default, the components are
arranged in increasing order. At the beginning of its work, the proce-
dure checks that the dimension of the vector 𝐴 is greater than zero.

According to the algorithm described in Section 4, the solution of
Problem 1 is implemented by the recursive procedure UniSys.



6. Implementation of Euler’s algorithm and
solution of Problem 1 (3)

The procedure gets at its input a set of integer vectors 𝐴𝑗 (𝑗 =
1, . . . ,𝑚) in the form of the list Vlst. If the input list is empty (row
5) or if the number of vectors is greater than their dimensionality
(row 8), or if the vectors are linearly dependent (rows 9–15), or if the
vectors in the input set have different types (rows 16–24) or different
dimension (rows 25–28), then the procedure UniSys terminates.



6. Implementation of Euler’s algorithm and
solution of Problem 1 (4)

If the list consists of a single vector, then the procedure Unimodr2
is called, the matrix 𝛼 is calculated, and the procedure terminates.
Otherwise, the procedure UniSys is called again for the set of vectors
𝐴1

𝑗 (𝑗 = 2, . . . ,𝑚) from which the first 𝑗 vector is removed, and
the unimodular matrix 𝛼 is applied. In this case, the dimension of
the vectors 𝐴1

𝑗 decreases by one, and the matrix 𝛼 is passed in the
parameter Uni for the repeated call of the procedure. If the procedure
UniSys terminates successfully, then it returns the resulting matrix
𝛾 that solves Problem 1.
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7. Power transformations (1)

Let the polynomial

𝑓(𝑋) =
∑︁

𝑓𝑄𝑋
𝑄 over 𝑄 ∈ S,

where 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 or C𝑛, 𝑋𝑄 = 𝑥𝑞11 · · ·𝑥𝑞𝑛𝑛 , 𝑄 =
(𝑞1, . . . , 𝑞𝑛) ∈ Z𝑛, 𝑄 ⩾ 0, 𝑓𝑄 are constant coefficients from R or C,
S = S(𝑓) is the support of 𝑓 , be given. Let ℱ be the algebraic
variety 𝑓(𝑋) = 0 and the point 𝑋 = 𝑋0 ∈ ℱ .

If 𝑋0 is a simple point, i.e., if at least one derivative 𝜕𝑓/𝜕𝑥𝑗 is
nonzero at 𝑋0 then the implicit function theorem implies that the
variety ℱ in the neighborhood of 𝑋0 is described by the equation

∆𝑥𝑗 = 𝜙(∆𝑥1, . . . ,∆𝑥𝑗−1,∆𝑥𝑗+1, . . . ,∆𝑥𝑛),

where ∆𝑥𝑘 = 𝑥𝑘 −𝑥0𝑘 and 𝜙 is a convergent series of its arguments.



7. Power transformations (2)

If 𝑋0 is not a simple point, then, according to [Bruno, 2000; Bruno,
Batkhin, 2012] we can seek the branches of the variety ℱ , passing
through 𝑋0 in the form of parametric expansions

∆𝑥𝑗 = 𝜙𝑗(𝜉1, . . . , 𝜉𝑛−1), 𝑗 = 1, . . . , 𝑛,

where 𝜉𝑘 are small parameters and 𝜙𝑗 — are converging power series.
To this end the convex hull Γ of the support S in the space R𝑛 is
constructed.

Then, Γ is the polyhedron, the boundary 𝜕Γ of which consists of
(generalized) faces Γ

(𝑑)
𝑗 of dimension 𝑑, 0 ≤ 𝑑 < 𝑛. Here 𝑗 is the

face index. Since all vertices Γ(0)
𝑗 of Γ are integer, each face Γ

(𝑑)
𝑗 has

𝑛 − 𝑑 integer linearly independent normals 𝑁
(𝑑)
𝑗,1 , . . . , 𝑁

(𝑑)
𝑗,𝑛−𝑑 ∈ R𝑛

*
i.e., normals belonging to the space R𝑛

* , which is dual of the space
R𝑛.



7. Power transformations (3)

In addition, each face Γ
(𝑑)
𝑗 is associated with the boundary set

𝐷
(𝑑)
𝑗 =

{︁
𝑄 ∈ S ∩ Γ

(𝑑)
𝑗

}︁
,

and the truncated sum

𝑓
(𝑑)
𝑗 (𝑋) =

∑︁
𝑓𝑄𝑋

𝑄 over 𝑄 ∈ 𝐷
(𝑑)
𝑗 . (8)



7. Power transformations (4)

Theorem 7.1 ([Bruno, 2000, Corollary in Chapter II, § 3],
[Bruno, Batkhin, 2012, Theorem 3.1]).

For the face Γ
(𝑑)
𝑗 there exists a power transformation

ln𝑌 = ln𝑋 · 𝛼,

where ln𝑌 = (ln 𝑦1, . . . , ln 𝑦𝑛) and ln𝑋 = (ln𝑥1, . . . , ln𝑥𝑛) with
a unimodular matrix 𝛼, that takes the truncated sum (8) to a
polynomial 𝑔 of 𝑑 variables, i.e.,

𝑓
(𝑑)
𝑗 (𝑋) = 𝑌 𝑇 𝑔(𝑦1, . . . , 𝑦𝑑),

where 𝑇 = (𝑡1, . . . , 𝑡𝑛) ∈ Z𝑛.



7. Power transformations (5)

However in [Bruno, 2000; Bruno, Batkhin, 2012], it was not pointed
out how the unimodular matrix 𝛼 can be calculated. This is done
in the current paper. In [Bruno, 1989, Part I, Ch. I, Section 1.9] it
was made for 𝑛 = 2. In [Bruno, Azimov, 2022; 2023] we describe
software of these algorithms. It will be considered in our talk.

This approach works for differential equations as well. For a system of
partial differential equations (PDE) it will be shown in talk “Asymp-
totic forms of solutions to a system of PDE” by A.D.Bruno and
A.B.Batkhin.
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Thanks for your attention!
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