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Abstract. This is a sequel of our talk at the PCA-2022, see [17] Here we state
a definitive result which almost completely closes the problem of bounded
elementary generation for Chevalley groups over arbitrary Dedekind rings of
arithmetic type with uniform bounds. Namely, for every reduced irreducible
root system Φ of rank ≥ 2 there exists a universal bound L = L(Φ) such
that the simply connected Chevalley groups G(Φ, R) have elementary width
≤ L for all Dedekind rings of arithmetic type R. We also state two results
concerning bounded elementary generation of the corresponding Steinberg
groups St(Φ, R).

Introduction

In the present talk, we consider Chevalley groups G = G(Φ, R), their elementary
subgroups E(Φ, R), and the corresponding Steinberg groups St(Φ, R). over various
classes of rings, mostly over Dedekind rings of arithmetic type (we refer to [40] for
notation and further references pertaining to Chevalley groups, and to [2] for the
number theory background).

Primarily, we are interested in the classical problem of estimating the width
of E(Φ, R) with respect to the elementary generators xα(ξ), α ∈ Φ, ξ ∈ R. We say
that a group G is boundedly elementarily generated if E(Φ, R) has finite width
wE(G) with respect to elementary generators.

This problem has attracted considerable attention over the last 40 years or
so. Below, we reproduce the survey page from [17].
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• Bounded elementary generation always holds with obvious small bounds for
0-dimensional rings. This follows from the existence of such short factorisations as
Bruhat decomposition, Gauß decomposition, unitriangular factorisation of length
4, and the like. On the other hand, bounded generation usually fails for rings of
dimension ≥ 2. But for 1-dimensional rings it is problematic.

• Existence of arbitrary long division chains in Euclidean algorithm implies
that SL(2,Z) and SL(2,Fq[t]) are not boundedly elementary generated [7]. But
this could be attributed to the exceptional behaviours of rank 1 groups.

• What came as a shock, was when Wilberd van der Kallen [15] established
that bounded elementary generation — and thus also finite commutator width —
fail even for SL(3,C[x]), a group of Lie rank 2 over a Euclidean ring! Compare also
[9], for a slightly simplified proof.

An emblematic example of 1-dimensional rings are Dedekind rings of arith-
metic type R = OS , for which bounded elementary generation of G(Φ, R) is in-
trinsically related to the positive solution of the congruence subgroup problem in
that group.

For the number case the situation is well understood, even for rank 1 groups.
Without attempting to give a detailed survey, let us mention some high points of
this development. Apart from the rings R = OS , |S| = 1, with finite multiplicative
group, such finiteness results are even available for SL(2, R).

• For all Chevalley groups of rank ≥ 2, after the initial breakthrough by
Douglas Carter and Gordon Keller, [4, 5], later explained and expanded by Oleg
Tavgen [37], and many others, we now know bounded elementary generation with
excellent bounds depending on the type of Φ and the class number of R alone.

This leaves us with the analysis of the group SL(2, R), for a Dedekind ring
R = OS , with infinite multiplicative group.

• At about the same time, jointly with Paige, Carter and Keller gave a model
theoretic proof [unpublished], [6], somewhat refashioned by Dave Morris [27]. But
as all model theoretic proofs, this proof gives no bounds whatsoever.

• On the other hand, another important advance was made by Cooke and
Weinberger [8], who got excellent bounds, modulo the Generalised Riemann Hy-
pothesis. The explicit unconditional bounds obtained thereafter seemed to be
grossly exaggerated [23].

• Some 10 years ago Maxim Vsemirnov and Sury [43] considered the key
example of SL

(
2,Z

[
1
p

])
, obtaining the bound wE(SL(2, R)) = 5 unconditionally .

• This was a key inroad to the first complete unconditional solution of the
general case with a good bound, in the work of Alexander Morgan, Andrei Rap-
inchuk and Sury [25]. The bound they gave is ≤ 9, but for the case when S contains
at least one real or non-Archimedean valuation was almost immediately improved
[with the same ideas] to ≤ 8 by Jordan and Zaytman [13].
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However, the function case turned out to be much more recalcitrant, and was
not fully solved until March 2023, apart from some important but isolated results.

• Until very recently the only published result was that by Clifford Queen [30].
Queen’s main result implies that whenR∗ is infinite + some additional assumptions
on R hold, the elementary width of the group SL(2, R) is 5. As shown in [16]
this implies, in particular, bounded elementary generation of all Chevalley groups
G(Φ, R) under the same assumptions on R, with plausible bounds.

• The case of the groups over the usual polynomial ring Fq[t] long remained
open. Only in 2018 has Bogdan Nica [28] established bounded elementary gen-
eration of SL(n,Fq[t]), n ≥ 3. Next, in [16] we established bounded elementary
generation of Sp(l,Fq[t]), l ≥ 2, and

• The next breakthrough came in the preprints of Alexander Trost [38, 39]
where he established bounded elementary generation of SL(n,R), for the ring of
integers R of an arbitrary global function field K. First with a bound of the form
L(d, q) · |Φ|, where the factor L depends on q and of the degree d of K, and then
with the uniform bound. His method in [39] is similar to Morris’ approach in [27].

1. Bounded generation of G(Φ, R)

Combining the methods of [16] and [39], we are now able to come up with a
complete solution in the general case. An important — and unexpected! — aspect
of this work is the existence of uniform bounds. In the symplectic case this result
is new even for the number case. All details are to be found in our forthcoming
paper [18].

Theorem A. Let Φ be a reduced irreducible root system of rank l ≥ 2. Then there
exists a constant L = L(Φ), depending on Φ alone, such that for any Dedekind
ring of arithmetic type R, any element in Gsc(Φ, R) is a product of at most L
elementary root unipotents.

Roughly, the ingredients of the proof are as follows.
• For the number case, when R∗ is infinite there is a definitive result by

Morgan, Rapinchuk and Sury [25], with a small uniform bound L ≤ 9, which can
be improved in some cases.

Some uniform bound can be now easily derived by a version of the usual
Tavgen’s trick [37], Theorem 1, as described and generalised in [41, 33] and [16, 17].

• The uniform bound for SL(3, R) over imaginary quadratic rings was ob-
tained by [27], see also [39]. Using the rank reduction methods based on Tavgen’s
lemma and stability, as in [16], we can reduce the analysis of G(Φ, R) for all non-
symplectic root systems to SL(3, R).

• This leaves us with the analysis of Sp(2l, R), l ≥ 2. What we haven’t
moticed when writing [16] is that bounded generation of Sp(2l, R), l ≥ 3, also
reduces to SL(3, R), with the help of the symplectic lemmas on switching long and
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short roots [16]. Thus, only Sp(4, R) requires separate analysis, since the bound
given by Tavgen [37] is not uniform, it depends on the degree and discriminant of
the number field K. However, in this case using our Sp4-lemmas from [16] we are
able to give a new proof in the style of [27].

• For the function case, SL(2, R) is not completely solved, so we have to rely
on the reduction to rank two systems instead. Luckily, for SL(3, R) the uniform
bound is given by Trost [39], which again (with the help of reduction lemmas
from [16]) provides uniform bounds for all other groups of rank ≥ 2, with the sole
exception of Sp(4, R). The key ingredient for this, bounded extraction of square
roots from Mennicke symbols, is also contained in [39]. For this last case we succeed
in imitating the proof from [27, 39] with our Sp4-lemmas from [16].

2. Bounded generation of St(Φ, R)

Also, we obtained partial results towards bounded generation for the corresponding
Steinberg groups. Again, we are interested in the bounded generation in terms of
the set

X = {xα(r) | r ∈ R, α ∈ Φ}
o elementary generators.

However, this case turned out to be much more demanding. Apart from the
bounded generation of the Chevalley groups themselves, it depends on the deep
results on the finiteness of the (linear) K2-functor, and on bunch of other difficult
results of K-theory, such as stability theorem for K2, centrality of K2, etc.

Here is our second main result. So far we have been able to establish it only
for the simply-laced systems.

Theorem B. Let Φ be a reduced irreducible simply laced root system of rank ≥ 2,
and let R be a Dedekind ring of arithmetic type. If Φ = A2 assume additionally
that R∗ is infinite. Then St(Φ, R) is boundedly elementary generated.

The idea is to derive this result from Theorem A. It suffices to establish
that the kernel K2(Φ, R) of the projection St(Φ, R) −→ G(Φ, R) is finite and thus
bounded elementary generation of G(Φ, R) implies that of St(Φ, R). Here are the
main sources on which we rely in this proof.

• The stable linear K2(R) is finite, for the function case this is proven by
Hyman Bass and John Tate [3] and for the number case by Howard Garland [10].
(These finiteness results were generalised to higher K-theory by Daniel Quillen
and Günter Harder, see the survey by Chuck Weibel [44]).

• However, we need similar results for the unstableK2-functorsK2(Φ, R). For
the linear case SL(n,R) there is a definitive stability theorem by Andrei Suslin and
Marat Tulenbaev [36]. However, injective stability for Dedekind rings only starts
with n ≥ 4, so that for SL(3, R) one has to refer to van der Kallen [14] instead,
which accounts for the extra-condition in this case.
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• However, for other embeddings there are no stability theorems in the form
we need them and starting where we want them to start. For instance, in the even
orthogonal case the theorem of Ivan Panin [29] starts with Spin(10, R), whereas
we would like to cover also Spin(8, R). In any case, there are no similar results for
the exceptional embeddings.

Thus, we have to prove to prove a comparison theorem relating K2(Φ, R) to
K2(A3, R). This is accomplished by a combination of two techniques. On the one
hand there are partial stability results for Dedekind rings developed by Hideya
Matsumoto [24] and surjective stability of K2 for some embeddings, established
by Michael Stein [34] and one of us Eugene Plotkin. On the other hand, there are
powerful recent calculations used to prove the centrality of K2 for all Chevalley
groups, by Andrei Lavrenov, Sergei Sinchuk, and Egor Voronetsky [19, 32, 20, 21,
42, 22].

• An essential obstacle in the symplectic case is thatK2(Cl, R) is the Milnor—
Witt KMW

2 , rather than the usual Milnor KM
2 , as for all other cases (compare [35]

for an explicit connection between K2Sp(R) and K(R)). As is well known, it may
fail to be finite, which means that our approach does not work at all in this case.
It does not mean that the result itself fails, but the proof would require an entirely
different idea.

But even for non-symplectic multiply laced systems, where our approach
could theoretically work, we were unable to overcome occurring technical difficul-
ties related to the K2-stability and comparison theorems. At least, as yet.

However, using specific calculations of K2(Φ,Fq[t]) and K2(Φ,Fq[t, t−1]) by
Eiichi Abe, Jun Morita, Jürgen Hurrelbrink and Ulf Rehmann [1, 11, 26, 31] we
were able to establish similar results over Fq[t] and Fq[t, t−1] also for the multiply
laced systems, even the symplectic ones.

Theorem C. Let Φ be a reduced irreducible root system, and R = Fq[t, t−1] or
R = Fq[t]. In the latter case assume additionally that Φ 6= A1. Then St(Φ, R) is
boundedly elementary generated.

In the present talk we do not touch further closely related problems, such as
commutator width or verbal width, or even relative versions of our results. Some
indications and references can be found in [16, 17], more are coming in [18].

Acknowledgements. In the preliminary version of the present work Theorem A
was stated in a weaker form, with some exceptions in the symplectic case. We
are grateful to Sergei Gorchinsky, Denis Osipov, and Dmitry Timashev, or the
invitations to give talks at the seminars in Moscow, and the subsequent discussions
that framed our mind to lift all remaining conditions.
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