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Notation

G simple, simply connected (simply-laced) algebraic group over C

U ⊂ B ⊂ G,unipotent radical in maximal Borel in G

Standard example:
⎛
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⋮ 0 ⋱ ⋆
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⋆ ⋆ ⋆ ⋆
0 ⋱ ⋆ ⋆
⋮ 0 ⋱ ⋆
0 . . . 0 ⋆

⎞
⎟⎟⎟
⎠
⊂ SLn+1(C)

The ring C[U] of regular functions on U has the nice property that every
irreducible representation of G embeds into it:

V(λ) ⊂ C[U].
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String parametrizations

A ‘nice’ basis for C[U] provides ‘nice’ bases for all irreducible
representations V(λ) ⊂ C[U] simultaneously.
The dual canonical basis is such a ‘nice’ basis . Its combinatorics is
governed by the string cones.
String cones are rational polyhedral cones Si ⊂ RN (N =# positive
roots of G) whose integer points parametrize the dual canonical
bases. Each reduced expression i of the longest element w0 of the
Weyl group W of G yields such a cone.
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An example of a string parametrizations
Let G = SL3, then W ≅ S3 and s1s2s1 = w0 is a reduced expressions
i = (1,2,1) of w0. In this example we have

Si = {(x1, x2, x3) ∈ R3 ∣ x3 ≥ 0, x1 ≥ 0, x2 − x3 ≥ 0}.

If we consider two reduced words i1 and i2, then there is a piecewise linear
bijection

Ψi1
i2 ∶ R

N → RN

such that
Ψi1

i2(Si1) = Si2 .

In our example:

Ψ1,2,1
2,1,2 ∶ S(1,2,1) → S(2,1,2)
(x1, x2, x3)↦ (max(x3, x2 − x1), x1 + x3,min(x1, x2 − x3)).
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Computation of inequalities

The piecewise linear bijection Ψi1
i2 ∶ Si1 → Si2 can be used to compute the

inequalities of all string cones.

In general many recursive steps are needed to compute the
inequalities.
The number of inequalities might be exponential with respect to the
rank of G. (For example, for E8 the number might be > 6899079264).
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Changing perspective to the geometric crystals

Several varieties related to a reductive group G have geometric crystal
structures. As shown by Berenstein and Kazhdan [1], the varieties
B−w0 = B− ∩Uw0U (w0 is is a representative of the longest element w0 in
the Weyl group W in NormG(T)) and T ⋅B−w0 have geometric crystal
structures.
The Berenstein-Kazhdan decoration function ΦBK on T ⋅B−w0 is defined as

ΦBK =∑
i∈I

∆w0Λi,siΛi

∆w0Λi,Λi
+∑

i∈I

∆w0siΛi,Λi

∆w0Λi,Λi

where Λi denotes the ith fundamental weight, I the set of simple roots, and
∆uΛi,vΛi is a generalized minor due to Berenstein-Zelevinsky.
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The variety T ⋅B−w0 has a positive structure θi ∶ T ⋅ (C∗)l(w0) → T ⋅B−w0
associated is with any reduced decomposition i of w0. (Birational mapping
with positive coefficients.)
Considering the tropicalization of the rational function ΦBK with respect
to such a positive structure, one obtains due to Berenstein and Kazhdan
[1] a Kashiwara subcrystal

{z ∈ X∗(T ⋅ (C∗)l(w0)) ∣TropΦBK(θi(z) ≥ 0},
X∗ denotes the set of cocharacters, Trop the troopicalization functor,
which is isomorphic to the disjoint union of all crystal bases B(λ) of the
finite dimensional irreducible representations of the quantum group
Uq(Lg), with highest weights λ. Here, Lg is the Langlands dual Lie
algebra of g = Lie(G).
Example
Let T = (C∗)2 ,f(x1, x2) = x1+x2

x2
. Then the tropicalization is the

piecewise-linear map

[f]trop ∶ Z2 → Z, (x1, x2)↦ min(x1, x2) − x2.
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Kankubo and Nakashima defined a half potential Φh
BK = ∑I ∆w0Λi,siΛi and a

positive structure θ−i ∶ (C∗)l(w0) → B−w0 , such that a subcrystal

{z ∈ X∗((C∗)l(w0)) ∣TropΦh
BK(θ

−
i (z) ≥ 0},

is isomorphic to the crystal base B(∞) of the negative part U−q (Lg) of
Uq(Lg).
One can compute the generalized minors and hence the
Nakashima-Zelevinsky polyhedral realization of string cones using i-trails
due to Berenstein-Zelevinsky. However no combinatorial (and algorithmic)
description of i-trails was known except the type A (Glietzer and Postnikov
(2000)) and for special reduced decompositions (Littelmann (1996)).
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Geometric crystals and the Berenstein-Kazhdan potential

For classical groups, Kanakubo-Koshevoy-Nakashima established [7] an
algorithm for explicit computing the half of the Berenstein-Kazhdan
potential Φh

BK for each reduced decomposition i of the longest element w0.

The tropicalization of Φh
BK defines the string cone parametrization

CΣi
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Changing perspective to the cluster setup

The cluster spaces A and X are unions of open tori A = ∪ΣTΣ,
X = ∪ΣT∨Σ, which are glued via certain birational transformations, called
A- and X -cluster mutations, respectively. The elements Σ in the common
index set of the two dual toric systems are called seeds. The families of
charts, equip A and X with the structure of a positive variety admitting
tropicalization.
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U is a ‘partial compactification of a cluster variety’ B−w0 ⇒ we can apply
the machinery of Gross-Hacking-Keel-Kontsevich to U (up to some
technical conditions) giving

a basis for C[U]
many parametrizations of this basis by rational polyhedral cones CΣ
(Σ a possibly infinite index set)

Theorem (Genz-Koshevoy-Schumann)
The string cones appear as a subset of the parametrizations CΣ, i.e. for
any reduced expression i there exists a cluster seed Σi and a unimodular
bijection

CΣi → Si

(and the technical conditions are satisfied here.)
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Parametrizations

In this setup Gross-Hacking-Keel-Kontsevich constructed a theta basis
Bcan of C[U] and a regular function W ∶ X → C (called potential) such
that Bcan is parametrized by

{x ∈ RN ∣ [W∣T∨Σ]trop(x) ≥ 0 for a Σ (⇐⇒ for any Σ)}.

Here W∣T∨Σ ∈ C[T
∨
Σ], hence W∣T∨Σ ∈ C[x

±1
k ∣ 1 ≤ k ≤ N] is a Laurent

polynomial.
[W∣T∨

Σ
]trop ∶ RN → R is the piecewise linear map we get when we replace

multiplication by addition and addition by taking the minimum.
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Computation W and Newton polytopes

Original definition of the potential W due to
Gross-Hacking-Keel-Kontsevich uses division of Laurent polynomials. To
get explicit formulas using the original definition is not an easy task for
computers.

We get an algorithm for an explicit form of W using only summation.
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Computation W and Newton polytopes

The frozen vertices and variables are labelled by the set −I ∪ I. For a frozen
vertex, a seed Σ is optimal if such a vertex is a source vertex after deleting
the edges joining this vertex and other frozen. For a frozen a ∈ I, there
exists an appropriate reduced word i′, such that seed Σi′ is optimal for a.
For a frozen −a ∈ −I, an optimal seed is obtained along ’level line
mutations’ of Σi′ .
For the optimal seed Σ for a frozen ±a, the ±ath part of the
GHKK-potential is equal to the value of the corresponding frozen cluster
variable,

W±a = Y±a. (1)
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For a given reduced decomposition i, one can compute the half

Wh
GHKK =∑

a∈I
Wa

of the GHKK-potential

WGHKK = ∑
±a∈−I∪I

W±a

using cluster mutations corresponding to 3-braid moves between the
reduced decompositions of w0 (for l and k, such that alk = −1,
skslsk = slsksl). Namely, for computing Wa, we apply a sequence of cluster
mutations corresponding to 3-braid moves which transform Σi into an
optimal seeds for a, then Wa is the X-cluster variable at the frozen vertex
labeled by a in the optimal seed computed in the variables of the seed Σi.
In variables of the seed Σi, such an X-cluster variable is equal to the
specification of the F-polynomial (see [4, 8]).
A half of WGHKK is a polynomial in the X-cluster variables Σi([9]).
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Computation W and Newton polytopes

Thus Wa and takes the form

Wa = Yc1a(t)
1 ⋯YcNa(t)

N ∏
i

Fi(t)(Y1,⋯,YN)bia(t).

In the above formula we take notations of [8], where t means the end
vertex of the path in the mutation graph from the optimal seed for a to Σi
and Yj’s are cluster variables of Σi.
From [5] we can compute full GHKK-potential:

WGHKK =Wh
GHKK +∑

i∈I
Y−1

is (1 +Y−1
is−1(1 +Y−1

is−2(1 +Y−1
is−3(⋯))))),

where i1, i2, . . . is are indices of i in reduced decomposition i.
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Computation W and Newton polytopes

Based on such an algorithm we study the Newton polytope of W and the
half Wh of W and make conjecture that the latter polytope is void, that is
it does not contains interior integer lattice points, and the former polytope
contains a unique lattice interior point. This conjecture supports by the
mirror symmetry construction of W as a Landau-Ginzburg potential to an
affine Calabi-Yau manifold (compatifications of big Bruhat cells). However,
we do not have a rigorous mirror symmetry proof of this conjecture.
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Lattice properties of W and Newton polytopes

Theorem 1
For simply-laced G, and a given reduced decomposition i, the Newton
polytopes ΦBK∣Σi and W∣Σi are isomorphic under a unimodular
transformation.

Corollary 2
The Newton polytopes Φh

BK is void if and only if the Newton polytopes
Wh is void.

We state the following

Conjecture 1. For a simply-laced group G, and any reduced
decomposition i of w0, the Newton polytope of Wh

GHKK is void.
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Lattice properties of W and Newton polytopes

Conjecture 2. For a simply-laced group G, and any reduced
decomposition i of w0, the Newton polytope of WGHKK contains a unique
interior lattice point.

For type A, the conjecture 1 holds true (Theorem).
For the numeric verification of Conjectures we compute the Newton
polytope Φh

BK using the Kanakubo-Koshevoy-Nakashima algorithm and
Polymake. We made computer verification of Conjecture 1 for the
following cases Dn, n = 4,5,6,7, E6, E7, and of Conjecture 2 for the
following cases An, n = 3,4,5,6, D4, D5.
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Algorithm description

We consider the Berenstein-Zelevinsky positive structure
θ−i ∶ T′ → B−w0 = B− ∩Bw0B, on the geometric crystal B−w0 = B− ∩Bw0B. A
tuple (t1, . . . , tN) denotes an element of T′. The algorithm for
computation the half of the Berenstein-Kazhdan decoration function Φh

BK
is based on Theorem 4.4 in [7]. For the input data consisting of a group G
and reduced word w0 = i.
We compute ΦBK as sum:

Φh
BK =∑

j∈I
∆w0Λj,sjΛj(θ−i(t1, . . . , tN)),

where ∆w0Λj,sjΛj is generalized minor function (see Defenition 2.2 in [7]).
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By Theorem 4.4. [7] it is possible to compute all monomials in ∆w0Λi,siΛi
by consequently applying multiplication by monomials

A−1
k =

∏k<l<k+ t−ail ik
l

tktk+
,

(see 3.7 in [7]) starting from predefined source monomial (A= (ailik) is the
Cartan matrix). The algorithm performs graph enumeration for graph with
vertices being monomials of ∆w0Λj,sjΛj and edges are relations of
monomials being different by multiplication by A−1

k .
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Algorithm description: additional notation

Operations k+ and k− are lookups in reduced decomposition w:

Defenition
k+ ∶= min{l ∈ [1, len(w)]∣wl = wk, l > k} ∪ {∞}
k− ∶= max{l ∈ [1, len(w)]∣wl = wk, l < k} ∪ {0}

Example:

w = (5, 3, 4, 2, 3, 5, 1, 2, 3, 2, 4, 3, 1, 2, 1, 3, 5, 3, 2, 1)
2+ = 5

11− = 3
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Algorithm description: additional notation

In the algorithm, we will associate integer vector b = (b1,b2,⋯,bN) to
each monomial.
Definition
Let M =∏N

l=1 tdl
l be a Laurent monomial. We inductively define integers

{bl}l=N,N−1,⋯,1 as
bN = dN + siΛi(hiN),

bt = dt + siΛi(hit) −
N−1
∑
l=t

bl+1ait,il+1 (t = N,N − 1,⋯,1).

We need to compute b-vector only for source monomial.
By lemma 5.2 [7] each A−1

k multiplication changes b-vector only at two
indices k and k+.
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Mutation procedure
def mutate_node(M)

//M =∏N
m=1 tdmm

compute bj for node if it was not computed previously
set initial result as empty list
for all simple roots αl

for all k in set of indices where wk == l
if k+ <∞

if dk<2 and bk+>0
new_monomial = M ∗ A−1

k
compute new_monomial bj:

Lemma 5.2 [7]
new_monomial bj = old_monomial bj
new_monomial bk +=1
new_monomial bk+ -=1

cache new_monomial bj
add new_monomial and graph edge to result

if dk == dk+
set lookup depth h=2
while k+h <∞ and dk+h = 0 and bkh+ = 0

h++
if dk+h = −1 and bk+h = 1

new_monomial = M ∗ A−1
k

compute new_monomial bi:
[Lemma 3.4]
new_monomial bj = old_monomial bj
new_monomial bk +=1
new_monomial bk+ -=1

cache new_monomial bj
add new_monomial and graph edge to result

return result
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ΦBK example

G = D4, w = (2,1,3,2,4,2,3,2,1,2,3,4) and i = 2
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Algorithm description

To compute potential W we use [6, 4, 8] as follows. Corresponding
X-cluster optimal seed Σw produces decomposition of half of WGHKK using
cluster mutations corresponding to 3-braid moves. In variables of seed Σw
X-cluster variables are equal to X to F-polynomials.

Wh
GHKK =∑

a∈I
Yc1a(t)

1 ⋯YcNa(t)
N ∏

i
Fi(t)(Y1,⋯,YN)bia(t).

To compute F-polynomial by [2, 3] we can determine that tm = Xm
Xm−

and Aj
becomes equal to Yj in X-cluster variables. Using this property we can
produce algorithm to compute WGHKK from data obtained in ΦBK
computation:

∑
i
∆w0Λi,siΛi ○ θ

−
i (t1,⋯, tN)∥tm→Ym
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WGHKK computation procedure
compute GHKK support

b_start = get bi vector of source monomial in ∆w0Λi,siΛi
b_stop = get bi vector of stop monomial in ∆w0Λi,siΛiee = basis spanned by ek − ek+
GHKK_support = coordinates of b_stop-b_start in ee

compute Y_frozen
Y_frozen=Y[number last occurrence of j in i]

compute Wj
compute start monomial

Y_start = Y_frozen * ∏0<k<=len(i)Yk
W = dictionary with keys in monomials in ∆w0Λi,siΛi
W[start monomial of ∆w0Λi,siΛi ] = Y_start
enumerate edges in graph Gs starting from source monomial:

v_b = start of the edge
v_e = end of the edge
k = mark on the edge
W[v_e]=W[e_b]*Y[k]

return set(values(W))

To compute full WGHKK we use straightforward formula

WGHKK =Wh
GHKK +∑

i∈I
Y−1

is (1 +Y−1
is−1(1 +Y−1

is−2(1 +Y−1
is−3(⋯))))),
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Algorithm complexity

All computational operations in the algorithm can be reduced only to
vector summation (on each step we only multiply Laurent monomials).
If r is rank of G, then complexity can be expressed in the terms r and
number of monomials in ΦBK. Precisely, graph enumeration in is making
no more than len(w0) ∼ r2 tries for each monomial in ΦBK. Each try does
no more than O(r2) additions and no more than O(r) lookup operations in
reduced decomposition and b-vectors.
Using prefix tree search for string representations of monomials it is
possible to reduce search of already computed monomials to linear time in
length of string representation of monomials of ΦBK ∼ O(r2). Also WGHKK
is linear in ΦBK string length.
Therefore total complexity is

O(r4K) ∼ O(r2 ∗ length of string representation),

which is proportional to time needed to print the answer.
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Real computational speed and experiments
We computed ΦBK and WGHKK for several millions cases for An,
n = 3,4,5,6,7, Dn, n = 4,5,6,7, E6, E7. Average time of ∆w0Λj,sjΛj and Wj
calcutaion with SageMath for single simple root of D6 is 70ms on PC with
dual 3.8 Ghz Intel®Xeon® Gold 5222 CPU running Ubuntu Linux.

To make verification of lattics properties conjectures we used Polymake
N_INTERIOR_LATTICE_POINTS method. Unfortunately it is exponentially
bound in terms of number of inequalities.

Example
For single reduced word for D6 average time of verification of Conjecture 1
is 12 seconds, for E7 - almost 90 seconds. Some cases can take much more
time depending on actual Newton polytope of ΦBK and WGHKK.
Checking Conjecture 2 for full WGHKK polytope is much slower and can
take from several hours to days even for D5.

F-polynomials and Newton polytopes Gleb Koshevoy, Denis Mironov 29/ 31



Real computational speed and experiments

Checking conjecture and other properties of ΦBK and WGHKK relies on
enumeration of all reduced decompositions of longest element in Weyl
group w0. If two reduced words can be transformed one into another using
only 2-braid moves, then the results of computation differ only by variable
exchange.
Number of classes of reduced decompositions is much smaller than
number of all reduced decompositions. For example, for D4 it’s 182 and
2316, and for D5 - 13198 and 12985968 (see A180607 OEIS sequence).

Auxiliary problem
Find algorithm of minimal complexity and constant memory consumption
enumerating set classes of reduced decompositions of longest element of
Weyl group and produce one reduced decomposition from each class with
respect of equivalence by 2-braid moves.
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