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Introduction

Calculus teaches us how to compute derivatives of any integer
order. We can interpret differentiation of negative integer order as
a repeated integration. The zero order of differentiation gives the
function itself. The question is how to generalize derivatives to
non-integer order? The first attempt to discuss such an idea
recorded in history was contained in the correspondence of Leibniz.
In one of his letters to Leibniz, Bernoulli asked about the meaning
of one theorem in the case of non-integer order of differentiation.
Leibniz in his letters to L’Hôpital in 1695 and to Wallis in 1697
made some remarks on the possibility of considering differentials
and derivatives of order 1/2 for to get acquainted with the main
milestones of fractional calculus).
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Introduction

Gamma function, generalization of the factorial function to
nonintegral values,

Γ(α) =

∞∫
0

xα−1e−x dx , Re(α) > 0.

was introduced by the Swiss mathematician Leonhard Euler in the
18th century. As a result, it became possible to extend the formula

(xp)(n) =
p!

(p − n)!
xp−n

for not-integer order n and the derivative of xp of non-integer order
α can be defined by

dα

dxα
xp =

Γ(p + 1)
Γ(p − α+ 1)

xp−α.
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Introduction

The question of the −1/2 order derivative was raised by Euler,
who, in 1738, mentioned that derivative of power function zb has a
meaning for non-integer order of differentiation. But only much
later in 1820 Lacroix realized Euler’s idea and presented an exact
formula for the order −1/2 derivative of the power function zb.
Therefore, if function f (x) is locally given by a convergent power
series or f (x) is an analytic function:

f (x) =
∞∑
p=0

apx
p, ap =

f (p)(0)
p!

,

then the derivative of order α > 0 can be formally defined as

dαf (x)

dxα
=

∞∑
p=0

Γ(p + 1)
Γ(p − α+ 1)

apx
p−α.
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Introduction

In 1823 first application of fractional calculus was discovered by
Abel who was looking for a curve in the plane such that the time
required for a particle to slide down the curve to its lowest point
under the influence of gravity is independent of its initial position
on the curve. Such curve is called the tautochrone. Abel found
that for funding this curve it is necessary to solve the equation

x∫
0

f (t)dt

(x − t)1/2
= ϕ(x), x > 0.

It should be noticed that Abel solved more general equation
x∫
0

f (t)dt

(x − t)α
= ϕ(x), x > 0,

where 0 < α < 1.
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Introduction

Further, we note that in 1832 Liouville formally extended the
formula for the integer derivative of the exponent dn

dxn e
bx (b is a

some number) to derivatives of an arbitrary order dα

dxα e
bx . Namely,

dαebx

dxα
= bαebx .

Based on this formula, one can formally write the derivative of the
order α ∈ R of an arbitrary function f represented by the series

dαf (x)

dxα
=

∞∑
k=0

ckb
α
k e

bkx , where f (x) =
∞∑
k=0

cke
bkx .

The limitation of this definition is related to the convergence of the
series.
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Formal definition of fractional integro-differentiation

So, starting from the 17th century, the need for a formal definition
of fractional integro-differentiation gradually formed. We present
here such definition following

Ross, B., 1975. A brief history and exposition of the
fundamental theory of fractional calculus. In: Ross B. (eds)
Fractional Calculus and Its Applications. Lecture Notes in
Mathematics, vol 457. Springer, Berlin, Heidelberg.

Operator Dνf (z), z ∈ C is the integro-differential operator of order
ν ∈ C if and only if

1 If f (z) is an analytic function of the complex variable z , the
derivative Dνf (z) is an analytic function of ν and z .

2 If n ∈ N then Dnf (z) is an ordinary differentiation, D−nf (z) is
an ordinary n-fold integration, D0f (z) = f (z).

3 Dν[af (z) + bg(z)] = aDνf (z) + bDνg(z).
4 DνDµf (z) = Dν+µf (z).
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Different approaches to classical fractional calculus

Operators

(Iαa+f )(x) =
1
Γ(α)

x∫
a

f (t)

(x − t)1−α
dt, a < x ≤ b,

(Dαa+f )(x) =
1

Γ(n − α)

(
d

dx

)n
x∫
a

f (t)dt

(x − t)α−n+1 , a < x ≤ b.

are called left-sided Riemann-Liouville integral and derivative on
the segment [a, b]. The definition of fractional integral is based on
a generalization of the formula for an n-fold integral

x∫
a

dx ...

x∫
a

dx

x∫
a︸ ︷︷ ︸

n

f (x)dx =
1

(n − 1)!

x∫
a

(x − t)n−1f (t)dt, x > a.
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Different approaches to classical fractional calculus

Now let consider how to generalize derivative of order n of the form

f (n)(x) = lim
h→0

(∆n
hf )(x)

hn
. (1)

We get

f (α)(x) = lim
h→+0

(∆αh f )(x)

hα
, (2)

where

(∆αh f )(x) =
∞∑
k=0

(−1)k
(
α

k

)
f (x−kh),

(
α

k

)
=

(−1)k−1αΓ(k − α)

Γ(1− α)Γ(k + 1)
.

(3)
For (2) is the left-hand sided Grünwald–Letnikov derivative
(α > 0) and integral (α < 0).
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Definition in Wolfram Mathematica

We will use notation Dαz [f (z)] for Riemann-Liouville-Hadamard
differ-integral for all α ∈ C. By definition of Dαz [f (z)] we put

Dαz [f (z)] =



f (z), α = 0;
f (α)(z), α ∈ Z and α > 0;
z∫
0

dt...

t∫
0

dt

t∫
0︸ ︷︷ ︸

−α times

f (t)dt, α ∈ Z and α < 0;

1
Γ(n−α)

dn

dzn

z∫
0

f (t)dt
(z−t)α−n+1 , n = bαc+ 1 and Re(α) > 0;

1
Γ(−α)

z∫
0

f (t)dt
(z−t)α+1 , Re(α) < 0 and α /∈ Z;

1
Γ(1−α)

d
dz

z∫
0

f (t)dt
(z−t)α , Re(α) = 0 and Im(α) 6= 0,

(4)
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Definition in Wolfram Mathematica

In (4) in the cases of divergence of integrals we use Hadamard
finite part approach. Such construction is called
Riemann-Liouville-Hadamard fractional order derivative.
For "good enough" functions f (z), provided convergence of above
integrals at basic point z = 0 it coincides with classical
Riemann-Liouville definition, but for analytical functions can be
extended to handle functions like 1/z or za or (za)b or e−z/z or√
z2/z or log(z2) or log(z) or za logn(z), which are basic for

building Taylor and Fourier series representations of more
complicated functions like hypergeometric, Meijer G-function and
Fox H-function.
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Examples

For example, using (4), we obtain

Dαz
[
1
z

]
=

{
(−1)α(1)αz−α−1, α ∈ Z,−1 < α;
z−α−1(−ψ(−α)+log(z)−γ)

Γ(−α) , in other cases,

Dαz
[
zλ
]
=


(−1)α(−λ)αzλ−α, α ∈ Z, λ ∈ Z, λ < 0, λ < α;
(−1)λ−1zλ−α(ψ(−λ)−ψ(λ−α+1)+log(z))

(−λ−1)!Γ(λ−α+1) , λ ∈ Z, λ < 0;
Γ(λ+1)
Γ(λ−α+1)z

λ−α, in other cases,
(5)

Dαz

[√
z2

z

]
=

z−α−1
√
z2

Γ(1− α)
,

Dαz [log(z)] =

{
(−1)α−1(α− 1)!z−α, α ∈ Z, α > 0;
z−α(−ψ(1−α)+log(z)−γ)

Γ(1−α) , in other cases.
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Examples

Dαz
[
e−z

z

]
= −

z−α

Γ(1− α) 2F2(1, 1; 2, 1− α; −z)+

+z−α−1

{
(−1)−α(1)α, α ∈ Z,−1 < α;
log(z)−ψ(−α)−γ

Γ(−α) , in other cases,
.

Dαz
[
log2(z)

]
=

=

2(−1)α−1(α− 1)!z−α(−ψ(α) + log(z) − γ), α ∈ Z, α > 0;
z−α

(
π2
6 +(log(z)−ψ(1−α)−γ)2−ψ ′(1−α)

)
Γ(1−α) . in other cases

Here ψ is the digamma function, given by ψ(z) = Γ ′(z)
Γ(z) , ψ

′ gives
the derivative of the digamma function.
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Calculation of fractional derivatives and integrals by series
expansion

Series expansion allows us to find Dαz [f (z)] because differ-integral
applied to each term of power series expansions of all functions
near zero. So if

f (z) = zb
∞∑
n=0

cnz
n ⇒ Dαz [f (z)] =

∞∑
n=0

cnDαz [zb+n]. (6)

Sum representations by formula (6) we meet for functions like

ez =

∞∑
n=0

zn

n!
, Jν(z) =

∞∑
n=0

(−1)n

n!Γ(n + ν+ 1)

(z
2

)2n+ν
.
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Calculation of fractional derivatives and integrals by series
expansion

But sometimes series expansions include log(z) function as in the
logarithmic case of K0(z):

K0(z) = −
(
log
(z
2

)
+ γ

)
I0(z) +

∞∑
n=1

Hn

(n!)2

(z
2

)2n
,

with n-th harmonic number Hn =
n∑

k=1

1
k and γ is Euler–Mascheroni

constant.
It means, that we should consider more general series

fL(z) = zb logk(z)
∞∑
n=0

cnz
n, and evaluate for arbitrary b, α and

integer k = 0, 1, 2, ... the following values

Dαz [fL(z)] =
∞∑
n=0

cnDαz
[
zb+n logk(z)

]
. (7)
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Calculation of fractional derivatives and integrals by series
expansion

In order to calculate (7) we should find Dαz
[
zλ logk(z)

]
by (4)

Dαz
[
zλ logk(z)

]
=



zλ logk(z), α = 0;
(zλ logk(z))(α), α ∈ Z and α > 0;

1
Γ(n−α)

dn

dzn

z∫
0

tλ logk (t)dt
(z−t)α−n+1 , n = bαc+ 1,Re(α) > 0;

1
Γ(−α)

z∫
0

tλ logk (t)dt
(z−t)α+1 , Re(α) < 0;

1
Γ(1−α)

d
dz

z∫
0

tλ logk (t)dt
(z−t)α , Re(α) = 0, Im(α) 6= 0.

(8)
Here for α ∈ Z and α > 0

(zλ logk(z))(α) =
α∑

j=0

(
α

j

)
Γ(λ+ 1)

Γ(λ− j + 1)
zλ−j d

α−j logk(z)

dzα−j
.
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Hadamard finite part of a singular integral

If some of integrals
z∫
0

tλdt
(z−t)α+1 ,

z∫
0

tλdt
(z−t)α−n+1 ,

z∫
0

tλ logk (t)dt
(z−t)α+1 ,

z∫
0

tλ logk (t)dt
(z−t)α−n+1 in (8) diverges we take Hadamard finite part of this

integral.

The concept of the "finite part" of a singular integral introduced
by Hadamard based on dropping some divergent terms and keeping
the finite part.
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Hadamard finite part of a singular integral

Let a function f = f (x) be integrable in an interval ε < x < A for
any 0 < ε, ε < A <∞ and the representation∫

ε<x<A

f (x) dx =

N∑
k=1

akε
−λk + h ln

1
ε
+ Jε (9)

hold valid, where ak , h, λk are some constant positive numbers
independent of A. If the limit lim

ε→0
Jε exists, then it is called the

Hadamard finite part of the singular integral of the function f . The
function f = f (x) is said to possess the Hadamard property at the
origin. The standard notation for the finite part of the Hadamard
singular integral is as follows

f .p.

∫
x<A

f (x) dx = lim
ε→0

Jε. (10)
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Hadamard finite part of a singular integral

Example. For example, when in
z∫
0

tλ logk (t)dt
(z−t)α−n+1 we have k = 0,

λ = −1 and α = −1

z∫
ε

dt

t
= log(z) − log(ε)

then

D−1
z

[
z−1] = f .p.

z∫
0

dt

t
= log(z).
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The Meijer G-function and fractional calculus

It is known

O. I. Marichev, Handbook of Integral Transforms of Higher
Transcendental functions (theory and algorithmic tables), Ellis
Horwood Ltd, 1983.
ResourceFunction["MeijerGForm"] in Wolfram
Mathematica

that wide class of functions (hypergeometric type functions) can be
defined as the functions, which generically can be represented
through linear combinations of generalized Meijer G–function.
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The Meijer G-function and fractional calculus

The Meijer G-function is a very general special function of the form

Gm,n
p,q

(
z , r

∣∣∣∣ a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)
=

=
1
2πi

∫
L

m∏
k=1

Γ(bk + s)
n∏

k=1
Γ(1− ak − s)

q∏
k=m+1

Γ(1− bk − s)
p∏

k=n+1
Γ(ak + s)

z−
s
r ds, (11)

where r ∈ R, r 6= 0, m ∈ Z, m ≥ 0, n ∈ Z, n ≥ 0, p ∈ Z, p ≥ 0,
q ∈ Z, q ≥ 0, m ≤ q, n ≤ p (details about contour L separating
"left" poles from "right" one see at
https://functions.wolfram.com/HypergeometricFunctions
/MeijerG1/02/.
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The Meijer G-function and fractional calculus

Fractional order integral of this function with argument a z r and
parameter v can be described by the formula

1
Γ(α)

z∫
0

(z − τ)α−1τu−1Gm,n
p,q

(
aτr , ν

∣∣∣∣ a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)
dτ = zα+u−1×

×Hm,n+1
p+1,q+1

(
a

1
ν z

r
ν

∣∣∣∣ (
1−u, r

ν

)
, (a1, 1) , ..., (an, 1) , (an+1, 1) , ..., (ap, 1)

(b1, 1) , ..., (bm, 1) , (bm+1, 1) , ..., (bq, 1) ,
(
1−α−u, r

ν

) )
which is valid under corresponding conditions, providing
convergence of above integral.
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The Meijer G-function and fractional calculus

Here Hm,n
p,q is the Fox H-function defined by a Mellin–Barnes integral

H m,n
p,q

[
z

∣∣∣∣(a1,A1) (a2,A2) . . . (ap,Ap)
(b1,B1) (b2,B2) . . . (bq,Bq)

]
=

=
1
2πi

∫
L

m∏
j=1
Γ(bj + Bjs)

n∏
j=1
Γ(1− aj − Ajs)

q∏
j=m+1

Γ(1− bj − Bjs)
p∏

j=n+1
Γ(aj + Ajs)

z−s ds,

where L is a certain contour separating the poles of the two groups
of factors in the numerator. If the function f (z) can be written as a
finite sum of generalized Meijer G-function we can find fractional
integral or derivative of f (z) in the form of the Meijer G-function or
Fox H-functions.
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The Meijer G-function and fractional calculus

Then we can write the Fox H-function as a simpler function if
possible. Numerous examples of evaluation of fractional order
integro derivatives users can find using
https://resources.wolframcloud.com/FunctionRepository
/resources/
FractionalOrderD for example,

Dαz [K0(z)] =
1
2
G 2,2

2,4

(
z

2
,
1
2

∣∣∣∣ 1−α
2 ,−α

2
−α

2 ,−
α
2 , 0,

1
2

)
.

24/30



Example

Let consider e−z

zn , n ∈ N. Using MeijerGForm from Wolfram
Mathematica we can write

e−z

zn
= G 1,0

0,1

(
z

∣∣∣∣ −
−n

)
=

1
2πi

∫
L

Γ(s − n)z−sds, Re s > n.

Expanding the exponent in a series, we get

e−z

zn
= z−n

∞∑
k=0

(−1)k

k!
zk =

∞∑
k=n

(−1)k

k!
zk−n +

n−1∑
k=0

(−1)k

k!
zk−n =

=

e−z −
n−1∑
k=0

(−1)k
k! zk

zn
+

n−1∑
k=0

(−1)k

k!
zk−n.
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Example

Using formula (8) we obtain for n ∈ N

Dαz
[
e−z

zn

]
=

(−1)nz−α

Γ(n + 1)Γ(1− α) 2F2(1, 1; n + 1, 1− α; −z)+

+ zk−α−n
n−1∑
k=0

(−1)k

k!


(−1)α(n − k)α, α ∈ Z, k − n < α
(−1)k−n−1(log(z)+ψ(n−k)−ψ(k−n−α+1))

(−k+n−1)!Γ(k−n−α+1) ,

in other cases.
(12)

When n is not natural number we get

Dαz
[
e−z

zn

]
=

Γ(1− n)

Γ(1− n − α)
z−α−n

1F1(1− n; 1− n − α; −z).
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Example

Here pFq is the generalized hypergeometric function is defined as a
power series

pFq(a1, . . . , ap ; b1, . . . , bq ; z) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
.
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Example

We can verify formulas using Integrate with option
GenerateConditions->False. For example when n = 1:

1
Γ(−α)

z∫
0

(z − t)−α−1 e
−t

t
dt =

=Integrate[ (z−t)−α−1

Γ(−α)
e−t

t ,t, 0, z, GenerateConditions ->
False]=

=
z−α−1 (z 2F2(1, 1; 2, 1− α; −z) − αH−α−1 + α log(z))

αΓ(−α)
,

where Hs = γ+ψ(s + 1) is the harmonic number (Hn =
n∑

k=1

1
k for

integer n), ψ(z) = Γ ′(z)
Γ(z) is the digamma function, γ is

Euler–Mascheroni constant.
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Example

So, we can calculate numerically Dαz
[
e−z

z

]
and

1
Γ(−α)

z∫
0
(z − t)−α−1 e−t

t dt.

We get for z -> Random[Complex], α-> -2:

Dαz
[
e−z

z

]→ −0.400227− 0.224905i ,

1
Γ(−α)

z∫
0

(z − t)−α−1 e
−t

t
dt → −0.400227− 0.224905i .

This result coincides with right side of the first formula (12) for
n = 1.
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