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Involutive Division

Zharkov, A. Yu., Blinkov, Yu. A.: Involutive approach to
investigating polynomial systems. Math. Comp. Simul., 42
(1996), 323-332

Gerdt, V. P., Blinkov, Yu. A.: Involutive Bases of Polynomial
Ideals. Math. Comp. Simul. 45 (1998) 519�542

Gerdt, V. P., Blinkov, Yu. A.: Minimal Involutive Bases. Math.
Comp. Simul. 45 (1998) 543�560

Let's somehow choose some variables M(u,U) of monomial u from
monomial set U and call this subsets multiplicative variables.

Let's narrow conventional division: allow division only by variables
from M(u,U). This would be involutive division L.
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Involutive Division Traits

global/local

noetherian

continuous

constructive
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Janet Division: Example

U = {x2y , xz , y2, yz , z2}, (x � y � z)

Monomial Nonmultiplicative Multiplicative

x2y � x , y , z
xz x y , z
y2 x y , z
yz x , y z
z2 x , y z

Denis A. Yanovich Summing-up Involutive Bases Computations Experience



Janet Division

Given a monomial order �, a �nite monomial set U, and a
monomial u ∈ U, the Janet separation of variables into MJ(u,U)
and NMJ(u,U) is de�ned as follows:
For each 1 ≤ i ≤ n divide U into groups labeled by non-negative
integers d1, . . . , di

[d1, . . . , di ] = {v ∈ F | dj = degj(v), 1 ≤ j ≤ i}.

x1 is (Janet) multiplicative for u ∈ U if

deg1(u) = max{deg1(v) | v ∈ U}

For i > 1 xi is multiplicative for u ∈ [d1, . . . , di−1] when

degi (u) = max{degi (v) | v ∈ [d1, . . . , di−1]}
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Janet Tree

Gerdt, V.P., Blinkov, Y., Yanovich, D.: Construction of Janet
bases I: Monomial bases. In: Ghanza, V., Mayr, E., Vorozhtsov,
E. (eds.) Computer Algebra in Scienti�c Computing, CASC
2001, pp. 233�247. Springer-Verlag, Berlin (2001)
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Involutive Ideal

De�nition, monomial

(∀u ∈ U) (∀x ∈ NML(u,U)) (∃v ∈ U : v |L(u · x))

Involutive normal form

NFL(p,F ) = p −
∑
ij

αijmijgj

αij ∈ K, gj ∈ F , mij ∈ M(lm(gj), lm(F )), lm(mijgj) � lm(p).
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Involutive Polynomial Ideal

Given an ideal I ⊂ R, an involutive division L and monomial order
�, a �nite L−autoreduced subset T ⊂ R generating I is called its
L−(involutive) basis if

(∀g ∈ I ) ( ∃ f ∈ T ) [ lm(f ) |L lm(g) ]

If division L is continuous this is equivalent to

( ∀f ∈ T ) ( ∀xi ∈ NML(lm(f ), lm(T )) ) [ NFL(xi · f ,T ) = 0 ]

The product xi · f of polynomial f ∈ T and xi ∈ NML(f ,T ) is
called nonmultiplicative prolongation of f , and construction of
involutive bases is often called completion.

Involutive and Gr�obner bases are examples of Canonical Form
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Involutive Basis Computation Algorithm

Input: F , L, ≺
Output: T � involutive basis of F
1: T := ∅ Q := F
2: while Q 6= ∅ do
3: T := T ∪ {p | lm(p) = min(lm(Q)), NFL(p,T ) 6= 0} ⇐ !!!
4: Q := Q \ {p}
5: Q := Q ∪ {p′ | ∀x /∈ M(lm(p), lm(T )) : p′ = p · x}
6: for all { r ∈ T | lm(r) A lm(p) } do
7: Q := Q ∪ {r}; T := T \ {r}
8: od

9: od
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Parallel Algorithms

Yanovich, D. A.: Parallelization of an Algorithm for
Computation of Involutive Janet Bases. Prog. and Comp. Soft.,
28(2), 2002, pp. 66-69

Gerdt V.P., Yanovich D.A.: Parallelism in Computing Janet
Bases // Proceedings of the Workshop on Under- and
Overdetermined Systems of Algebraic or Di�erential Equations
(Karlsruhe, March 18-19, 2002), J.Calmet, M.Hausdorf,
W.M.Seiler (Eds.). Institute of Algorithms and Cognitive
Systems, University of Karlsruhe. 2002, P.47-56.
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Parallel Algorithm: SMP

1: T := ∅ Q := F , F � initial polynomial set, T � basis
2: while Q 6= ∅ do
3: S := ∅ P := { qi ∈ Q | i ≤ Kthr , qi −min ∈ Q }
4: Q := Q \ P
5: S := NFLead(P) using Kthr threads
6: Q := Q ∪ S
7: T := T ∪ {p | lm(pol(p)) = min(lm(Q))} Q := Q \ {p}
8: Q := Q ∪ {p · xi | xi ∈ nmp(p)}
9: if lm(pol(p)) = anc(p) then

10: for all { r ∈ T | lm(pol(r)) A lm(pol(p)) } do
11: Q := Q ∪ {r}; T := T \ {r}
12: od

13: S := NFFull(T ) using Kthr threads
14: T := S
15: �

16: od
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Parallel Algorithm: Distributed, Main

Yanovich, D.A.: Reduction-Level Parallel Computations of
Gr�obner and Janet Bases. Bulletin of Peoples' Friendship

University of Russia, Mathematics. Information Sciences.
Physics. No.3, Issue 2 (2010), pp. 19�24.

1: GroupSize := number of computational nodes
2: MyRank := rank in group
3: T := ∅ Q := F
4: if MyRank = 0 then

5: distribute Q to Qi

6: �

7: while Qi 6= ∅ | i = 0..GroupSize do

8: Algorithm Step
9: od
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Parallel Algorithm: Distributed, Step 1/2

1: S := ∅ P := { qi ∈ Q |qi −min ∈ Q }
2: Q := Q \ P S := NFLead(P) Q := Q ∪ S
3: h := {p ∈ Q | lm(pol(p)) = min(lm(Q))} Q := Q \ {p}
4: gather hi i = 0..GroupSize
5: choose hj | lm(pol(hj)) = min(lm({hi}))
6: if MyRank = j then
7: broadcast hj as h � new basis element
8: else

9: Q := Q ∪ hMyRank

10: �

11: T := T ∪ h
12: if MyRank = 0 then

13: S := {h · xi | xi ∈ nmp(h)}
14: distribute S by Qi

15: �
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Parallel Algorithm: Distributed, Step 2/2

1: if lm(pol(h)) = anc(h) then
2: for all { r ∈ T | lm(pol(r)) A lm(pol(h)) } do
3: T := T \ {r}
4: if MyRank = 0 then

5: Q := Q ∪ {r}
6: �

7: od

8: S := NFFull(T )
9: T := S

10: �
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Multimodular Basis Computation: Problem

Yanovich, D.A.: Parallel modular computation of Gr�obner and
involutive bases. Program Comput Soft 39 (2013), 110�113

Motivation

1 Method to avoid intermediate coe�cient growth

2 Natural and e�ective parallelism

Di�culties

1 Unlucky primes

2 One cannot directly lift the polynomial with Z-coe�cients
from its modular images: each of them is multiplied by the
unknown common modular factor cp · fp, di�erent for every p
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Multimodular Basis Computation: Theory

Chinese Reminder Theorem

Having modular images c1, · · · , cn of a number c with respective
modules m1, · · · ,mn one can construct c/ZM , M =

∏
mi

Farey Fractions

The Farey fractions FN is the set of all fractions in lowest terms
between 0 and 1 whose denominators do not exceed N, arranged in
order of magnitude. There is a one-to-one mapping between FN

and 0, 1, · · · , p − 1, where N ≤
√

(p − 1)/2 (P. Kornerup,
R. T. Gregory: Mapping Integers and Hensel Codes Onto Farey
Fractions)

Example

F5 = {01 ,
1
5
, 1
4
, 1
3
, 2
5
, 1
2
, 3
5
, 2
3
, 3
4
, 4
5
, 1
1
}
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Multimodular Basis Computation: Algorithm Outline

Get the polynomial system in Z and compute several bases
(Gr�obner or involutive) in Zp over m1, · · · ,mn

Select images modulo lucky primes

Reconstruct them to ZM , M =
∏

mi

Map all modular coe�cients to FM Farey fractions and integer
numerator. If M is su�ciently large, we will have all rational
coe�cients from the basis of the original system reconstructed.

Denis A. Yanovich Summing-up Involutive Bases Computations Experience



System of Linear Di�erence Equations

Gerdt, V.P.: Gr�obner Bases Applied to Systems of Linear
Di�erence Equations, Physics of Particles and Nuclei Letters,
5, no. 3 (2008), pp. 248-254

Gerdt, V.P., Robertz, D.: Computation of Di�erence Gr�obner
Bases, Computer Science Journal of Moldova, 20, no. 2(59)
(2012), pp. 203-226

Yanovich, D.A.: Computing Gr�obner and Involutive Bases for
Linear Systems of Di�erence Equations, EPJ Web Conf.
Volume 173, 2018
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Di�erence Ideals

Di�erence operators

Let indeterminates y1, . . . , ym be functions of variables x1, . . . , xn
Let θ1, . . . , θn be di�erences

(θi ◦ y j)(x1, . . . , xn) = y j(x1, . . . , xi + 1, . . . , xn)

Di�erence ring properties

θiθj = θjθi
θi ◦ (f + g) = θi ◦ f + θi ◦ g
θi ◦ (fg) = (θi ◦ f )(θi ◦ g)
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Di�erence Ideals

Monomial ordering � ranking

θiθ
µ ◦ y j � θµ ◦ y j

θµ ◦ y j � θν ◦ yk ⇔ θiθ
µ ◦ y j � θiθν ◦ yk

Having ordering we can de�ne leading term, normal form of
di�erence equation, Gr�obner and involutive basis for systems much
alike algebraic polynomial case

From algebraic to di�erence

Prolongation by variable ⇒ multiplying by shift operator
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Di�erence Ideals: Algorithm Outline

Input: F , L, ≺
Output: T � involutive basis of F
1: T := ∅ Q := F
2: while Q 6= ∅ do
3: T := T ∪ {p | lm(p) = min(lm(Q)), NF (p,T ) 6= 0}
4: Q := Q \ {p}, Q := Q ∪ θµ ◦ p, µ ∈ NM(p,T )
5: if lm(p) == anc(p) then
6: for all { r ∈ T | lm(r) = θµ ◦ lm(p) } do
7: Q := Q ∪ {r}; T := T \ {r}
8: od

9: �

10: od
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Tableau Data Structure

Yanovich, D.A.: Computation of Involutive and Gr�obner Bases
Using the Tableau Representation of Polynomials, Prog. and
Comp. Soft., Volume 46 (2), 2020, pp.162-166

Monomials

Let's construct the all-monomials-index: one number corresponds
to the one monomial. Let it be the number of the column in the
big tableau

Polynomials

The one row of the big DENSE tableau corresponds to the one
polynomial

Coe�cients

Crossing of the column (monomial) and the row (polynomial) gives
us term coe�cient
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Tableau polynomial set represenation
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Parallel Computations: Tableau

Involutive Bases

When computing involutive bases one already have some sort of the
natural parallelism (many reductions can be done in parallel)

Tableau

We don't have any strong coupling in the tableau: one can
COMPUTE and STORE any part of the tableau separately

GPU Computations?

Yes! We don't have any pointer in our tableau, it's a perfect match
for CUDA-like kernels.
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What Next?

It was interesting and pleasant 25 years journey but all has it's
ending, seems I have done all that I could:

all repositories will be cleaned up and presented as public
domain eventually
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