Summing-up Involutive Bases Computations Experience

Denis A. Yanovich

Joint Institute for Nuclear Research, Dubna, Russia

PCA2023, 17 April 2023

In Memory of Professor V.P.Gerdt

21.01.1947 - 05.01.2021

Denis A. Yanovich Summing-up Involutive Bases Computations Experience

Involutive Division

- Zharkov, A. Yu., Blinkov, Yu. A.: Involutive approach to investigating polynomial systems. Math. Comp. Simul., 42 (1996), 323-332
- Gerdt, V. P., Blinkov, Yu. A.: Involutive Bases of Polynomial Ideals. Math. Comp. Simul. 45 (1998) 519–542
- Gerdt, V. P., Blinkov, Yu. A.: Minimal Involutive Bases. Math. Comp. Simul. 45 (1998) 543-560

Let's somehow choose some variables M(u, U) of monomial u from monomial set U and call this subsets *multiplicative variables*.

Let's narrow conventional division: allow division only by variables from M(u, U). This would be *involutive division L*.

- global/local
- noetherian
- continuous
- constructive

Janet Division: Example

$$U = \{x^2y, xz, y^2, yz, z^2\}, (x \succ y \succ z)$$

Monomial	Nonmultiplicative	Multiplicative
x^2y	_	<i>x</i> , <i>y</i> , <i>z</i>
xz	X	<i>y</i> , <i>z</i>
y^2	X	<i>y</i> , <i>z</i>
yz	х, у	Z
z^2	<i>x</i> , <i>y</i>	Z

< ∃ > < ∃

Janet Division

Given a monomial order \succ , a finite monomial set U, and a monomial $u \in U$, the Janet separation of variables into $M_J(u, U)$ and $NM_J(u, U)$ is defined as follows: For each $1 \le i \le n$ divide U into groups labeled by non-negative integers d_1, \ldots, d_i

$$[d_1,\ldots,d_i] = \{ v \in F \mid d_j = \deg_j(v), \ 1 \le j \le i \}.$$

 x_1 is (Janet) multiplicative for $u \in U$ if

$$\mathsf{deg}_1(u) = \mathsf{max}\{\mathsf{deg}_1(v) \mid v \in U\}$$

For i > 1 x_i is multiplicative for $u \in [d_1, \ldots, d_{i-1}]$ when

$$\mathsf{deg}_i(u) = \mathsf{max}\{\mathsf{deg}_i(v) \mid v \in [d_1, \dots, d_{i-1}]\}$$

Janet Tree

 Gerdt, V.P., Blinkov, Y., Yanovich, D.: Construction of Janet bases I: Monomial bases. In: Ghanza, V., Mayr, E., Vorozhtsov, E. (eds.) Computer Algebra in Scientific Computing, CASC 2001, pp. 233–247. Springer-Verlag, Berlin (2001)

Definition, monomial

$$(\forall u \in U) \ (\forall x \in NM_L(u, U)) \ (\exists v \in U : v|_L(u \cdot x))$$

Involutive normal form

$$NF_L(p,F) = p - \sum_{ij} \alpha_{ij} m_{ij} g_j$$

 $\alpha_{ij} \in \mathbb{K}, \ g_j \in F, \ m_{ij} \in M(\operatorname{lm}(g_j), \operatorname{lm}(F)), \ \operatorname{lm}(m_{ij}g_j) \preceq \operatorname{lm}(p).$

伺 ト イヨ ト イヨ ト 三日

Given an ideal $I \subset \mathbb{R}$, an involutive division L and monomial order \succ , a finite L-autoreduced subset $T \subset \mathbb{R}$ generating I is called its L-(involutive) basis if

$$(\forall g \in I) (\exists f \in T) [\operatorname{lm}(f) |_L \operatorname{lm}(g)]$$

If division L is continuous this is equivalent to

 $(\forall f \in T) (\forall x_i \in NM_L(lm(f), lm(T))) [NF_L(x_i \cdot f, T) = 0]$

The product $x_i \cdot f$ of polynomial $f \in T$ and $x_i \in NM_L(f, T)$ is called *nonmultiplicative prolongation* of f, and construction of involutive bases is often called *completion*.

Involutive and Gröbner bases are examples of Canonical Form

Input:
$$F, L, \prec$$

Output: T - involutive basis of F
1: $T := \emptyset \ Q := F$
2: while $Q \neq \emptyset$ do
3: $T := T \cup \{p \mid lm(p) = min(lm(Q)), \ NF_L(p, T) \neq 0\} \Leftarrow !!!$
4: $Q := Q \setminus \{p\}$
5: $Q := Q \cup \{p' \mid \forall x \notin M(lm(p), lm(T)) : p' = p \cdot x\}$
6: for all $\{r \in T \mid lm(r) \sqsupset lm(p)\}$ do
7: $Q := Q \cup \{r\}; \quad T := T \setminus \{r\}$
8: od
9: od

- Yanovich, D. A.: Parallelization of an Algorithm for Computation of Involutive Janet Bases. Prog. and Comp. Soft., 28(2), 2002, pp. 66-69
- Gerdt V.P., Yanovich D.A.: Parallelism in Computing Janet Bases // Proceedings of the Workshop on Under- and Overdetermined Systems of Algebraic or Differential Equations (Karlsruhe, March 18-19, 2002), J.Calmet, M.Hausdorf, W.M.Seiler (Eds.). Institute of Algorithms and Cognitive Systems, University of Karlsruhe. 2002, P.47-56.

Parallel Algorithm: SMP

1:
$$T := \emptyset \ Q := F, F - \text{initial polynomial set}, T - \text{basis}$$

2: while $Q \neq \emptyset$ do
3: $S := \emptyset \ P := \{ q_i \in Q \mid i \leq K_{thr}, q_i - min \in Q \}$
4: $Q := Q \setminus P$
5: $S := NF_{Lead}(P)$ using K_{thr} threads
6: $Q := Q \cup S$
7: $T := T \cup \{p \mid lm(pol(p)) = min(lm(Q))\} \ Q := Q \setminus \{p\}$
8: $Q := Q \cup \{p \cdot x_i \mid x_i \in \text{nmp}(p)\}$
9: if $lm(pol(p)) = anc(p)$ then
10: for all $\{ r \in T \mid lm(pol(r)) \supseteq lm(pol(p)) \}$ do
11: $Q := Q \cup \{r\}; T := T \setminus \{r\}$
12: od
13: $S := NF_{Full}(T)$ using K_{thr} threads
14: $T := S$
15: fi
16: od

Parallel Algorithm: Distributed, Main

- Yanovich, D.A.: Reduction-Level Parallel Computations of Gröbner and Janet Bases. Bulletin of Peoples' Friendship University of Russia, Mathematics. Information Sciences. Physics. No.3, Issue 2 (2010), pp. 19–24.
- 1: GroupSize := number of computational nodes
- 2: MyRank := rank in group
- 3: $T := \emptyset \ Q := F$
- 4: if MyRank = 0 then
- 5: distribute Q to Q_i

6: **fi**

- 7: while $Q_i \neq \emptyset \mid i = 0..$ GroupSize do
- 8: Algorithm Step

9: **od**

Parallel Algorithm: Distributed, Step 1/2

1:
$$S := \emptyset \ P := \{ q_i \in Q \ | q_i - min \in Q \}$$

2: $Q := Q \setminus P \ S := NF_{Lead}(P) \ Q := Q \cup S$
3: $h := \{ p \in Q \ | \ lm(pol(p)) = min(lm(Q)) \} \ Q := Q \setminus \{ p \}$
4: gather $h_i \ i = 0...GroupSize$
5: choose $h_j \ | \ lm(pol(h_j)) = min(lm(\{h_i\}))$
6: if $MyRank = j$ then
7: broadcast h_j as h - new basis element
8: else
9: $Q := Q \cup h_{MyRank}$
10: fi
11: $T := T \cup h$
12: if $MyRank = 0$ then
13: $S := \{h \cdot x_i \ | \ x_i \in nmp(h)\}$
14: distribute S by Q_i
15: fi

Parallel Algorithm: Distributed, Step 2/2

1: if
$$\operatorname{Im}(\operatorname{pol}(h)) = \operatorname{anc}(h)$$
 then
2: for all { $r \in T \mid Im(\operatorname{pol}(r)) \sqsupset \operatorname{Im}(\operatorname{pol}(h))$ } do
3: $T := T \setminus \{r\}$
4: if $MyRank = 0$ then
5: $Q := Q \cup \{r\}$
6: fi
7: od
8: $S := NF_{Full}(T)$
9: $T := S$
10: fi

Multimodular Basis Computation: Problem

Yanovich, D.A.: Parallel modular computation of Gröbner and involutive bases. Program Comput Soft 39 (2013), 110–113

Motivation

- Method to avoid intermediate coefficient growth
- 2 Natural and effective parallelism

Difficulties

- Unlucky primes
- ⁽²⁾ One cannot directly lift the polynomial with \mathbb{Z} -coefficients from its modular images: each of them is multiplied by the unknown common modular factor $c_p \cdot f_p$, different for every p

周 ト イ ヨ ト イ ヨ ト

Chinese Reminder Theorem

Having modular images c_1, \dots, c_n of a number c with respective modules m_1, \dots, m_n one can construct c/\mathbb{Z}_M , $M = \prod m_i$

Farey Fractions

The Farey fractions \mathbb{F}_N is the set of all fractions in lowest terms between 0 and 1 whose denominators do not exceed N, arranged in order of magnitude. There is a one-to-one mapping between \mathbb{F}_N and $0, 1, \dots, p-1$, where $N \leq \sqrt{(p-1)/2}$ (P. Kornerup, R. T. Gregory: Mapping Integers and Hensel Codes Onto Farey Fractions)

Example

$$F_5 = \{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\}$$

- Get the polynomial system in \mathbb{Z} and compute several bases (Gröbner or involutive) in \mathbb{Z}_p over m_1, \cdots, m_n
- Select images modulo lucky primes
- Reconstruct them to $\mathbb{Z}_M, \ M = \prod m_i$
- Map all modular coefficients to \mathbb{F}_M Farey fractions and integer numerator. If M is sufficiently large, we will have all rational coefficients from the basis of the original system reconstructed.

- Gerdt, V.P.: Gröbner Bases Applied to Systems of Linear Difference Equations, Physics of Particles and Nuclei Letters, 5, no. 3 (2008), pp. 248-254
- Gerdt, V.P., Robertz, D.: Computation of Difference Gröbner Bases, Computer Science Journal of Moldova, 20, no. 2(59) (2012), pp. 203-226
- Yanovich, D.A.: Computing Gröbner and Involutive Bases for Linear Systems of Difference Equations, EPJ Web Conf. Volume 173, 2018

Difference operators

Let indeterminates y^1, \ldots, y^m be functions of variables x_1, \ldots, x_n Let $\theta_1, \ldots, \theta_n$ be differences

$$(\theta_i \circ y^j)(x_1,\ldots,x_n) = y^j(x_1,\ldots,x_i+1,\ldots,x_n)$$

Difference ring properties

$$egin{aligned} & heta_i heta_j = heta_j heta_i \ heta_i \circ (f+g) &= heta_i \circ f + heta_i \circ g \ & heta_i \circ (fg) = (heta_i \circ f)(heta_i \circ g) \end{aligned}$$

伺 ト イヨ ト イヨト

Monomial ordering - ranking

 $\begin{array}{l} \theta_i \theta^\mu \circ y^j \succ \theta^\mu \circ y^j \\ \theta^\mu \circ y^j \succ \theta^\nu \circ y^k \Leftrightarrow \theta_i \theta^\mu \circ y^j \succ \theta_i \theta^\nu \circ y^k \end{array}$

Having ordering we can define leading term, normal form of difference equation, Gröbner and involutive basis for systems much alike algebraic polynomial case

From algebraic to difference

Prolongation by variable \Rightarrow multiplying by shift operator

Input:
$$F, L, \prec$$

Output: T - involutive basis of F
1: $T := \emptyset \ Q := F$
2: while $Q \neq \emptyset$ do
3: $T := T \cup \{p \mid lm(p) = min(lm(Q)), \ NF(p, T) \neq 0\}$
4: $Q := Q \setminus \{p\}, \ Q := Q \cup \theta^{\mu} \circ p, \mu \in NM(p, T)$
5: if $lm(p) == anc(p)$ then
6: for all $\{r \in T \mid lm(r) = \theta^{\mu} \circ lm(p)\}$ do
7: $Q := Q \cup \{r\}; T := T \setminus \{r\}$
8: od
9: fi
10: od

Tableau Data Structure

Yanovich, D.A.: Computation of Involutive and Gröbner Bases Using the Tableau Representation of Polynomials, Prog. and Comp. Soft., Volume 46 (2), 2020, pp.162-166

Monomials

Let's construct the all-monomials-index: one number corresponds to the one monomial. Let it be the number of the column in the big tableau

Polynomials

The one row of the big DENSE tableau corresponds to the one polynomial

Coefficients

Crossing of the column (monomial) and the row (polynomial) gives us term coefficient

Tableau polynomial set represenation

Denis A. Yanovich Summing-up Involutive Bases Computations Experience

Involutive Bases

When computing involutive bases one already have some sort of the natural parallelism (many reductions can be done in parallel)

Tableau

We don't have any strong coupling in the tableau: one can COMPUTE and STORE any part of the tableau separately

GPU Computations?

Yes! We don't have any pointer in our tableau, it's a perfect match for CUDA-like kernels.

It was interesting and pleasant 25 years journey but all has it's ending, seems I have done all that I could:

• all repositories will be cleaned up and presented as public domain eventually

