Summing-up Involutive Bases Computations Experience

Denis A. Yanovich

Joint Institute for Nuclear Research, Dubna, Russia

$$
\text { PCA2023, } 17 \text { April } 2023
$$

In Memory of Professor V.P. Gerdt

Involutive Division

目 Zharkov，A．Yu．，Blinkov，Yu．A．：Involutive approach to investigating polynomial systems．Math．Comp．Simul．， 42 （1996），323－332
围 Gerdt，V．P．，Blinkov，Yu．A．：Involutive Bases of Polynomial Ideals．Math．Comp．Simul． 45 （1998）519－542

固 Gerdt，V．P．，Blinkov，Yu．A．：Minimal Involutive Bases．Math． Comp．Simul． 45 （1998）543－560

Let＇s somehow choose some variables $M(u, U)$ of monomial u from monomial set U and call this subsets multiplicative variables．

Let＇s narrow conventional division：allow division only by variables from $M(u, U)$ ．This would be involutive division L ．

Involutive Division Traits

- global/local
- noetherian
- continuous
- constructive

Janet Division: Example

$$
U=\left\{x^{2} y, x z, y^{2}, y z, z^{2}\right\},(x \succ y \succ z)
$$

Monomial	Nonmultiplicative	Multiplicative
$x^{2} y$	-	x, y, z
$x z$	x	y, z
y^{2}	x	y, z
$y z$	x, y	z
z^{2}	x, y	z

Janet Division

Given a monomial order \succ, a finite monomial set U, and a monomial $u \in U$, the Janet separation of variables into $M_{J}(u, U)$ and $N M_{J}(u, U)$ is defined as follows:
For each $1 \leq i \leq n$ divide U into groups labeled by non-negative integers d_{1}, \ldots, d_{i}

$$
\left[d_{1}, \ldots, d_{i}\right]=\left\{v \in F \mid d_{j}=\operatorname{deg}_{j}(v), 1 \leq j \leq i\right\}
$$

x_{1} is (Janet) multiplicative for $u \in U$ if

$$
\operatorname{deg}_{1}(u)=\max \left\{\operatorname{deg}_{1}(v) \mid v \in U\right\}
$$

For $i>1 x_{i}$ is multiplicative for $u \in\left[d_{1}, \ldots, d_{i-1}\right]$ when

$$
\operatorname{deg}_{i}(u)=\max \left\{\operatorname{deg}_{i}(v) \mid v \in\left[d_{1}, \ldots, d_{i-1}\right]\right\}
$$

Janet Tree

囲 Gerdt, V.P., Blinkov, Y., Yanovich, D.: Construction of Janet bases I: Monomial bases. In: Ghanza, V., Mayr, E., Vorozhtsov, E. (eds.) Computer Algebra in Scientific Computing, CASC 2001, pp. 233-247. Springer-Verlag, Berlin (2001)

Involutive Ideal

Definition, monomial

$$
(\forall u \in U)\left(\forall x \in N M_{L}(u, U)\right)\left(\exists v \in U:\left.v\right|_{L}(u \cdot x)\right)
$$

Involutive normal form

$$
\begin{gathered}
N F_{L}(p, F)=p-\sum_{i j} \alpha_{i j} m_{i j} g_{j} \\
\alpha_{i j} \in \mathbb{K}, g_{j} \in F, m_{i j} \in M\left(\operatorname{lm}\left(g_{j}\right), \operatorname{lm}(F)\right), \operatorname{lm}\left(m_{i j} g_{j}\right) \preceq \operatorname{lm}(p) .
\end{gathered}
$$

Involutive Polynomial Ideal

Given an ideal $I \subset \mathbb{R}$, an involutive division L and monomial order \succ, a finite L-autoreduced subset $T \subset \mathbb{R}$ generating $/$ is called its L-(involutive) basis if

$$
(\forall g \in I)(\exists f \in T)\left[\left.\operatorname{lm}(f)\right|_{L} \operatorname{lm}(g)\right]
$$

If division L is continuous this is equivalent to

$$
(\forall f \in T)\left(\forall x_{i} \in N M_{L}(\operatorname{lm}(f), \operatorname{lm}(T))\right) \quad\left[N F_{L}\left(x_{i} \cdot f, T\right)=0\right]
$$

The product $x_{i} \cdot f$ of polynomial $f \in T$ and $x_{i} \in N M_{L}(f, T)$ is called nonmultiplicative prolongation of f, and construction of involutive bases is often called completion.

Involutive and Gröbner bases are examples of Canonical Form

Involutive Basis Computation Algorithm

Input: F, L, \prec
Output: T - involutive basis of F
1: $T:=\emptyset Q:=F$
2: while $Q \neq \emptyset$ do
3: $\quad T:=T \cup\left\{p \mid \operatorname{Im}(p)=\min (\operatorname{lm}(Q)), N F_{L}(p, T) \neq 0\right\} \Leftarrow!!!$
4: $\quad Q:=Q \backslash\{p\}$
5: $\quad Q:=Q \cup\left\{p^{\prime} \mid \forall x \notin M(\operatorname{lm}(p), \operatorname{Im}(T)): p^{\prime}=p \cdot x\right\}$
6: for all $\{r \in T \mid \operatorname{lm}(r) \sqsupset \operatorname{lm}(p)\}$ do
7: $\quad Q:=Q \cup\{r\} ; \quad T:=T \backslash\{r\}$
8: od
9: od

Parallel Algorithms

雷 Yanovich, D. A.: Parallelization of an Algorithm for Computation of Involutive Janet Bases. Prog. and Comp. Soft., 28(2), 2002, pp. 66-69
E Gerdt V.P., Yanovich D.A.: Parallelism in Computing Janet Bases // Proceedings of the Workshop on Under- and Overdetermined Systems of Algebraic or Differential Equations (Karlsruhe, March 18-19, 2002), J.Calmet, M.Hausdorf, W.M.Seiler (Eds.). Institute of Algorithms and Cognitive Systems, University of Karlsruhe. 2002, P.47-56.

Parallel Algorithm: SMP

1: $T:=\emptyset Q:=F, F$ - initial polynomial set, T - basis
2: while $Q \neq \emptyset$ do
3: $S:=\emptyset P:=\left\{q_{i} \in Q \mid i \leq K_{t h r}, q_{i}-\min \in Q\right\}$
4: $\quad Q:=Q \backslash P$
5: $\quad S:=N F_{\text {Lead }}(P)$ using $K_{\text {thr }}$ threads
6: $\quad Q:=Q \cup S$
7: $\quad T:=T \cup\{p \mid \operatorname{Im}(p o l(p))=\min (\operatorname{lm}(Q))\} \quad Q:=Q \backslash\{p\}$
8: $\quad Q:=Q \cup\left\{p \cdot x_{i} \mid x_{i} \in \operatorname{nmp}(p)\right\}$
9: if $\operatorname{lm}(\operatorname{pol}(p))=\operatorname{anc}(p)$ then
10: \quad for all $\{r \in T \mid \operatorname{Im}(\operatorname{pol}(r)) \sqsupset \operatorname{lm}(\operatorname{pol}(p))\}$ do
11: $\quad Q:=Q \cup\{r\} ; \quad T:=T \backslash\{r\}$
12: od
13: $\quad S:=N F_{\text {Full }}(T)$ using $K_{\text {thr }}$ threads
14: $\quad T:=S$
15: fi
16: od

Parallel Algorithm: Distributed, Main

Yanovich, D.A.: Reduction-Level Parallel Computations of Gröbner and Janet Bases. Bulletin of Peoples' Friendship University of Russia, Mathematics. Information Sciences.
Physics. No.3, Issue 2 (2010), pp. 19-24.
1: GroupSize $:=$ number of computational nodes
2: MyRank := rank in group
3: $T:=\emptyset \quad Q:=F$
4: if MyRank $=0$ then
5: distribute Q to Q_{i}
6: fi
7: while $Q_{i} \neq \emptyset \mid i=0$..GroupSize do
8: Algorithm Step
9: od

Parallel Algorithm: Distributed, Step 1/2

```
1: \(S:=\emptyset P:=\left\{q_{i} \in Q \mid q_{i}-\min \in Q\right\}\)
2: \(Q:=Q \backslash P \quad S:=N F_{\text {Lead }}(P) \quad Q:=Q \cup S\)
3: \(h:=\{p \in Q \mid \operatorname{lm}(\operatorname{pol}(p))=\min (\operatorname{lm}(Q))\} \quad Q:=Q \backslash\{p\}\)
4: gather \(h_{i} i=0 .\). GroupSize
5: choose \(h_{j} \mid \operatorname{Im}\left(\operatorname{pol}\left(h_{j}\right)\right)=\min \left(\operatorname{Im}\left(\left\{h_{i}\right\}\right)\right)\)
6: if MyRank \(=j\) then
7: broadcast \(h_{j}\) as \(h\) - new basis element
8: else
9: \(\quad Q:=Q \cup h_{M y \operatorname{Rank}}\)
10: fi
11: \(T:=T \cup h\)
12: if MyRank \(=0\) then
14: distribute \(S\) by \(Q_{i}\)
15: fi
```


Parallel Algorithm: Distributed, Step 2/2

```
1: if \(\operatorname{lm}(\operatorname{pol}(h))=\operatorname{anc}(h)\) then
2: for all \(\{r \in T \mid \operatorname{Im}(\operatorname{pol}(r)) \sqsupset \operatorname{lm}(\operatorname{pol}(h))\}\) do
3: \(\quad T:=T \backslash\{r\}\)
4: if MyRank \(=0\) then
5: \(\quad Q:=Q \cup\{r\}\)
6: \(\quad \mathrm{fi}\)
7: od
8: \(\quad S:=N F_{\text {Full }}(T)\)
9: \(\quad T:=S\)
10: fi
```


Multimodular Basis Computation: Problem

軎 Yanovich, D.A.: Parallel modular computation of Gröbner and involutive bases. Program Comput Soft 39 (2013), 110-113

Motivation

(1) Method to avoid intermediate coefficient growth
(2) Natural and effective parallelism

Difficulties

(1) Unlucky primes
(2) One cannot directly lift the polynomial with \mathbb{Z}-coefficients from its modular images: each of them is multiplied by the unknown common modular factor $c_{p} \cdot f_{p}$, different for every p

Multimodular Basis Computation: Theory

Chinese Reminder Theorem

Having modular images c_{1}, \cdots, c_{n} of a number c with respective modules m_{1}, \cdots, m_{n} one can construct $c / \mathbb{Z}_{M}, M=\prod m_{i}$

Farey Fractions

The Farey fractions \mathbb{F}_{N} is the set of all fractions in lowest terms between 0 and 1 whose denominators do not exceed N, arranged in order of magnitude. There is a one-to-one mapping between \mathbb{F}_{N} and $0,1, \cdots, p-1$, where $N \leq \sqrt{(p-1) / 2}$ (P. Kornerup, R. T. Gregory: Mapping Integers and Hensel Codes Onto Farey Fractions)

Example

$F_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}$

Multimodular Basis Computation: Algorithm Outline

- Get the polynomial system in \mathbb{Z} and compute several bases (Gröbner or involutive) in \mathbb{Z}_{p} over m_{1}, \cdots, m_{n}
- Select images modulo lucky primes
- Reconstruct them to $\mathbb{Z}_{M}, M=\prod m_{i}$
- Map all modular coefficients to \mathbb{F}_{M} Farey fractions and integer numerator. If M is sufficiently large, we will have all rational coefficients from the basis of the original system reconstructed.

System of Linear Difference Equations

雷 Gerdt, V.P.: Gröbner Bases Applied to Systems of Linear Difference Equations, Physics of Particles and Nuclei Letters, 5, no. 3 (2008), pp. 248-254
(Gerdt, V.P., Robertz, D.: Computation of Difference Gröbner Bases, Computer Science Journal of Moldova, 20, no. 2(59) (2012), pp. 203-226

圊 Yanovich, D.A.: Computing Gröbner and Involutive Bases for Linear Systems of Difference Equations, EPJ Web Conf. Volume 173, 2018

Difference Ideals

Difference operators

Let indeterminates y^{1}, \ldots, y^{m} be functions of variables x_{1}, \ldots, x_{n} Let $\theta_{1}, \ldots, \theta_{n}$ be differences

$$
\left(\theta_{i} \circ y^{j}\right)\left(x_{1}, \ldots, x_{n}\right)=y^{j}\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)
$$

Difference ring properties

$$
\begin{gathered}
\theta_{i} \theta_{j}=\theta_{j} \theta_{i} \\
\theta_{i} \circ(f+g)=\theta_{i} \circ f+\theta_{i} \circ g \\
\theta_{i} \circ(f g)=\left(\theta_{i} \circ f\right)\left(\theta_{i} \circ g\right)
\end{gathered}
$$

Difference Ideals

Monomial ordering - ranking
$\theta_{i} \theta^{\mu} \circ y^{j} \succ \theta^{\mu} \circ y^{j}$
$\theta^{\mu} \circ y^{j} \succ \theta^{\nu} \circ y^{k} \Leftrightarrow \theta_{i} \theta^{\mu} \circ y^{j} \succ \theta_{i} \theta^{\nu} \circ y^{k}$
Having ordering we can define leading term, normal form of difference equation, Gröbner and involutive basis for systems much alike algebraic polynomial case

From algebraic to difference

Prolongation by variable \Rightarrow multiplying by shift operator

Difference Ideals: Algorithm Outline

```
Input: \(F, L, \prec\)
Output: \(T\) - involutive basis of \(F\)
    1: \(T:=\emptyset Q:=F\)
    while \(Q \neq \emptyset\) do
    3: \(\quad T:=T \cup\{p \mid \operatorname{lm}(p)=\min (\operatorname{Im}(Q)), N F(p, T) \neq 0\}\)
    4: \(\quad Q:=Q \backslash\{p\}, Q:=Q \cup \theta^{\mu} \circ p, \mu \in N M(p, T)\)
    5: if \(\operatorname{lm}(p)==\operatorname{anc}(p)\) then
    6: \(\quad\) for all \(\left\{r \in T \mid \operatorname{Im}(r)=\theta^{\mu} \circ \operatorname{lm}(p)\right\}\) do
    7: \(\quad Q:=Q \cup\{r\} ; \quad T:=T \backslash\{r\}\)
    8: od
    9: fi
10: od
```


Tableau Data Structure

R Yanovich, D.A.: Computation of Involutive and Gröbner Bases Using the Tableau Representation of Polynomials, Prog. and Comp. Soft., Volume 46 (2), 2020, pp.162-166

Monomials

Let's construct the all-monomials-index: one number corresponds to the one monomial. Let it be the number of the column in the big tableau

Polynomials

The one row of the big DENSE tableau corresponds to the one polynomial

Coefficients

Crossing of the column (monomial) and the row (polynomial) gives us term coefficient

Tableau polynomial set represenation

Parallel Computations: Tableau

Involutive Bases

When computing involutive bases one already have some sort of the natural parallelism (many reductions can be done in parallel)

Tableau

We don't have any strong coupling in the tableau: one can COMPUTE and STORE any part of the tableau separately

GPU Computations?

Yes! We don't have any pointer in our tableau, it's a perfect match for CUDA-like kernels.

What Next?

It was interesting and pleasant 25 years journey but all has it's ending, seems I have done all that I could:

- all repositories will be cleaned up and presented as public domain eventually

so LoNG aND...

