Construction and application of fully symmetric quadrature rules on the simplexes

A.A. Gusev, G. Chuluunbaatar, O. Chuluunbaatar, S.I. Vinitsky

> MLIT & BLTP, Joint Institute for Nuclear Research, Dubna, Russia

OUTLINE

- Motivation and the statement of the problem
- Construction of fully symmetric Gaussian quadratures on simplexes:
 - ▶ No points outside the simplex
 - Positive weights
- Resume

Polynomial Computer Algebra, April 17-22, 2023

Euler International Mathematical Institute, St. Petersburg, Russia

A detailed description in:

G. Chuluunbaatar, O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, PI-type fully symmetric quadrature rules on the 3-,..., 6-simplexes, Computers & Mathematics with Applications 124, pp. 89–97 (2022).

Motivation

A realistic and quantized quadrupole-octupole-vibrational collective Hamiltonian

$$H_{\text{coll}} = -\frac{\hbar^2}{2} \left\{ \frac{1}{\det B_2} \sum_{\nu,\nu'=0,2} \frac{\partial}{\partial \alpha_{2\nu}} \sqrt{\det B_2} [B_2^{-1}]^{\nu\nu'} \frac{\partial}{\partial \alpha_{2\nu'}} + \frac{1}{\det B_3} \sum_{\nu,\nu'=0}^3 \frac{\partial}{\partial \alpha_{3\nu}} \sqrt{\det B_3} [B_3^{-1}]^{\nu\nu'} \frac{\partial}{\partial \alpha_{3\nu'}} \right\} + V(\alpha_{20}, \alpha_{22}, \alpha_{30}, \alpha_{31}, \alpha_{32}, \alpha_{33})$$

 α_{20} , α_{22} , α_{30} , α_{31} , α_{32} , α_{33} quadrupole and octupole collective variables with metrics;

 $B_2 \equiv B_2(\alpha_{20}, \alpha_{22}), B_3 \equiv B_3(\alpha_{30}, \alpha_{31}, \alpha_{32}, \alpha_{33})$ denote the quadrupole and octupole microscopic mass tensor

A. Dobrowolski, K. Mazurek, and A. Góźdź, Consistent quadrupole-octupole collective model. Phys. Rev. C 94, p. 054322 (2016)
A. Dobrowolski, K. Mazurek, and A. Góźdź, Rotational bands in the quadrupole-octupole collective model. Phys. Rev. C 97, p. 024321 (2018)
A.A. Gusev et al, Finite Element Method for Solving the Collective Nuclear Model with Tetrahedral Symmetry. Acta Physica Polonica B Proceedings Supplement 12, p. 589–594 (2019).

Motivation

Example: reduced 2D model ¹⁵⁶Dy nucleus

The coefficients $g_{ij}(x)$ and the potential energy $V(x_1, x_2)$ of ¹⁵⁶Dy nucleus given in variables (q_{20}, q_{32}) in units $10^{-5}\hbar^2/(\text{MeV fm}^5)$.

Motivation

Finite Element Method

- $\bullet~\mathrm{BVP} \to \mathrm{minimization}$ of quadratic functional
- Finite Element Mesh (Simplex Mesh, Parallelepiped Mesh, ...)
- Construction of shape functions
 - Lagrange Interpolation Polynomials
 - Hermite Interpolation Polynomials

...

- Construction of piecewise polynomials by joining the shape functions
- Calculations of the integrals (of the order 2p for FEM scheme of the order p).
 - ▶ Fully symmetric Gaussian quadratures

...

• Solving of Algebraic Eigenvalue Problem

Construction of the d-dimensional quadrature formulas

p-order QR for the master-element $\hat{x}_{j} = (\hat{x}_{j1}, \dots, \hat{x}_{jd}), \ \hat{x}_{jk} = \delta_{jk}, \ j = 0, \dots, d$

$$\int_{\Delta_d} V(x) dx = \frac{1}{d!} \sum_{j=1}^{N_{dp}} w_j V(x_{j1}, \ldots, x_{jd}), x = (x_1, \ldots, x_d), \quad dx = dx_1 \ldots dx_d,$$

 N_{dp} is the number of nodes, w_j are the weights, and (x_{j1}, \ldots, x_{jd}) are the nodes.

$$\int_{\Delta_d} x_1^{k_1} \cdots x_{d+1}^{k_{d+1}} dx = \frac{\prod_{i=1}^{d+1} k_i!}{\left(d + \sum_{i=1}^{d+1} k_i\right)!}, \quad x_{d+1} = 1 - \sum_{i=1}^d x_i.$$

Barycentric coordinates (BC) $(y_1, \ldots, y_{d+1}), \sum_{k=1}^{d+1} y_k = 1.$

$$\int_{\Delta_d} V(x) dx = \frac{1}{d!} \sum_{j=1} w_j \sum_{k_1, \dots, k_{d+1}} V(y_{jk_1}, \dots, y_{jk_d} | y_{jk_{d+1}}),$$

where the internal summation over k_1, \ldots, k_{d+1} is carried out over the different permutations of the BC $(y_{j1}, \ldots, y_{jd+1})$.

ORBITS

Orbit $S_{[i]} \equiv S_{m_1...m_{r_{di}}}$

$$(y_1, \dots, y_{d+1}) = (\overbrace{\lambda_1, \dots, \lambda_1}^{m_1 \text{ times}}, \dots, \overbrace{\lambda_{m_{r_{di}}}}^{m_{r_{di}} \text{ times}}),$$

 $\sum_{j=1}^{r_{di}} m_j = d+1, \quad \sum_{j=1}^{r_{dj}} m_j \lambda_j = 1, \quad m_1 \ge \dots \ge m_{r_{di}}.$
 $P_{di} = \frac{(d+1)!}{m_1! \dots m_{r_{di}}!}$ is the number of different permutations.

System of nonlinear algebraic equations w.r.t unknowns $W_{i,j}$ and $\lambda_{i,jl}$

$$\int_{\Delta_d} s_2^{l_2} s_3^{l_3} \times \cdots \times s_{d+1}^{l_{d+1}} dx = \frac{1}{d!} \sum_{i=0}^{M_d} P_{di} \sum_{j=1}^{K_{di}} W_{i,j} s_{i,j2}^{l_2} s_{i,j3}^{l_3} \times \cdots \times s_{i,jd+1}^{l_{d+1}}, \quad (1)$$
$$s_k = \sum_{l=1}^{d+1} x_l^k, \quad s_{i,jk} = \sum_{l=1}^{r_{di}} m_l \lambda_{i,jl}^k \quad 2l_2 + 3l_3 + \cdots + (d+1)l_{d+1} \le p,$$

where P_{di} is the number of different permutations of the BC corresponded to the orbit $S_{[i]}$.

The minimal numbers E_{dp} of independent equations for fully symmetric p-order quadrature rules.

d∖p	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	4	5	7	8	10	12	14	16	19	21	24	27	30	33	37	40	44
3	5	6	9	11	15	18	23	27	34	39	47	54	64	72	84	94	108
4	5	7	10	13	18	23	30	37	47	57	70	84	101	119	141	164	192
5	5	7	11	14	20	26	35	44	58	71	90	110	136	163	199	235	282
6	5	7	11	15	21	28	38	49	65	82	105	131	164	201	248	300	364

Modified Levenberg-Marquardt method

The problem of solving the system of nonlinear equations

$$f_i(\mathbf{x}) = 0, \quad i = 1, \dots, m, \quad \mathbf{x} = (x_1, \dots, x_n) \in \mathcal{X}_n$$

and the corresponding minimization problem

$$\min_{\mathbf{x}\in\mathcal{X}}\frac{1}{2}\|F(\mathbf{x})\|^2 \equiv \min_{\mathbf{x}\in\mathcal{X}}\frac{1}{2}\sum_{i=1}^m f_i^2(\mathbf{x}),$$

where $\mathcal{X} \subseteq \mathbb{R}^n$ is a nonempty, closed and convex set. LM-type algorithm is an iterate method which solves at each iteration a linearization subproblem with the form

$$\min_{\mathbf{x}^{k}+\mathbf{d}\in\mathcal{X}}F_{k}(\mathbf{d}), \quad F_{k}(\mathbf{d})=\frac{1}{2}\|F(\mathbf{x}^{k})+J_{k}\mathbf{d}\|^{2}+\frac{1}{2}\mu_{k}(\mathbf{d},D_{k}\mathbf{d}),$$

where \mathbf{x}^k is the current iterate, $J_k \in \mathbb{R}^{m \times n}$ is a Jacobian of $F(\mathbf{x})$ at $\mathbf{x} = \mathbf{x}^k$, $D_k = \text{diag}(J_k^T J_k) \in \mathbb{R}^{n \times n}$ is a positive diagonal matrix and μ_k is a positive parameter. Hence the solution $F_k(\mathbf{d})$ of subproblem (2) always exists uniquely, in particular for unconstrained case

$$\mathbf{d}^{k} = -(J_{k}^{T}J_{k} + \mu_{k}D_{k})^{-1}J_{k}^{T}F(\mathbf{x}^{k}).$$

Algorithm for calculations

- 1. Choose $\mathbf{x}^{0} \in \mathcal{X}$ and $\mu > \mathbf{0}$, and set $k = \mathbf{0}$.
- 2. If $\|F(\mathbf{x}^k)\| = 0$, stop.
- Calculate
 J_k and set
 μ_k = μ||F(**x**^k)||²,
 and compute **d**^k.
 4. **x**^{k+1} = **x**^k + **d**^k,
 k = k + 1, and

go to 2.

${\it Results}$

Set of quadrature formulas on a 6-simplex

p	N _{dp}	S_7	S_{61}	S_{52}	S_{43}	<i>S</i> ₅₁₁	S_{421}	S_{331}	S_{322}
4	43	1	1		1				
5	64	1	1	1	1				
6	175		2	1	1		1		
7	252		2	1	2	1	1		
8	448		3		2	1	3		
9	700		2	2	3	2	1	1	1
10	1078		2	3	2	3	3	2	1

Results

The minimal numbers N_{dp} of nodes for PI-type fully symmetric p-order quadrature rules and comparison with the known numbers N_{dp} .

р	d = 3		d :	= 4	d =	= 5	<i>d</i> = 6		
	cur.	JS	cur.	F	cur.	G	cur.	G	
4	14	14	20	20	27	27	43	43	
6	24	24	56	56	102	102	175	175	
8	46	46	105	105	228	257	448	553	
10	79	81	210	210	479		1078		
12	123	168	370	445					
14	175	204	601	725					
16	248	304	956	1055					
18	343	436							
20	441	552							

JS: J. Jaśkowiec, N. Sukumar, Int. J. Num. Methods Eng. 122 (2021) 148–171.
F: C.V. Frontin et al, App. Num. Math. 166 (2021) 92–113.
G: A.A. Gusev et al, Lecture Notes in Computer Science 11077 (2018) 197–213.

Estimates of the errors of the quadrature rules

Decomposition the integrand V(x) into a Taylor series

$$V(x) = V^{t}(x) + O(x^{p+2}), \quad V^{t}(x) = \sum_{i_{1}+\ldots+i_{d} \leq p+1} V^{(i_{1},\ldots,i_{d})}(x_{t}) \frac{(x_{1}-x_{1t})^{i_{1}} \times \ldots \times (x_{d}-x_{dt})^{i_{d}}}{i_{1}! \times \ldots \times i_{d}!},$$

where $V^{(i_1,\ldots,i_d)}(x_t)$ is a mixed derivative at $x = x_t$.

Taking into account that the quadrature is exact for polynomials of degree less than p, one has

$$\varepsilon(V^{t}(x)) \equiv \left| \int_{\Delta_{d}} V^{t}(x) dx - \frac{1}{d!} \sum_{j=1}^{N_{dp}} w_{j} V^{t}(x_{j1}, \dots, x_{jd}) \right|$$

$$\leq \sum_{i_{1}+\dots+i_{d}=p+1} |V^{(i_{1},\dots,i_{d})}| \varepsilon_{i_{1},\dots,i_{d}}, \quad \varepsilon_{i_{1},\dots,i_{d}} \equiv \varepsilon \left(\frac{x_{1}^{i_{1}} \times \dots \times x_{d}^{i_{d}}}{i_{1}! \times \dots \times i_{d}!} \right),$$

The largest of the coefficients, $\max \varepsilon_{i_1,...,i_d}$, their sum $\sum \varepsilon_{i_1,...,i_d}$ and the root of the sum of their squares $\sqrt{\sum \varepsilon_{i_1,...,i_d}^2}$ for a 6-simplex.

р	N _{dp}	$\max \varepsilon_{i_1,,i_6}$	$\sum \varepsilon_{i_1,,i_6}$	$\sqrt{\sum \varepsilon_{i_1,\ldots,i_6}^2}$
4	43	2.23 · 10 ⁻⁹	4.88 · 10 ⁻⁹	$2.54 \cdot 10^{-9}$
5	64	$2.45 \cdot 10^{-10}$	$5.89 \cdot 10^{-10}$	$2.89 \cdot 10^{-10}$
6	175	$2.41 \cdot 10^{-12}$	$1.43 \cdot 10^{-11}$	$4.45 \cdot 10^{-12}$
7	252	$3.01 \cdot 10^{-13}$	8.26 · 10 ⁻¹³	$3.38 \cdot 10^{-13}$
8	448	$7.08 \cdot 10^{-15}$	$3.30 \cdot 10^{-14}$	$1.04 \cdot 10^{-14}$
9	700	$6.48 \cdot 10^{-16}$	$2.05 \cdot 10^{-15}$	$7.34 \cdot 10^{-16}$
10	1078	$3.99 \cdot 10^{-18}$	$3.30 \cdot 10^{-17}$	$7.19 \cdot 10^{-18}$

Test example

6D integral

$$I_{d} = \int_{\Delta_{d}} (x_{1} + \ldots + x_{6}) \exp(-x_{1} - \ldots - x_{6}) dx_{1} \ldots dx_{6} = 6 - \frac{1957}{120 e} \approx 0.000499448.$$

The differences $\epsilon_{\text{test}}^{q}$, between the numerical and exact values, and the corresponding Runge coefficient $\beta = \log_2 \left| (\epsilon_{\text{test}}^{q} - \epsilon_{\text{test}}^{2q}) / (\epsilon_{\text{test}}^{2q} - \epsilon_{\text{test}}^{4q}) \right|$

р	ϵ_{test}^2	ϵ_{test}^4	$\epsilon_{\text{test}}^{8}$	β
4	$+7.91 \cdot 10^{-12}$	$+1.73 \cdot 10^{-13}$	$+2.90 \cdot 10^{-15}$	5.50
5	$+1.06 \cdot 10^{-12}$	$+1.81 \cdot 10^{-14}$	$+2.90 \cdot 10^{-16}$	5.87
6	$-1.73 \cdot 10^{-14}$	$-7.35 \cdot 10^{-17}$	$-2.93 \cdot 10^{-19}$	7.88
7	$-1.81 \cdot 10^{-16}$	$-8.02 \cdot 10^{-19}$	$-3.22 \cdot 10^{-21}$	7.82
8	$+2.09 \cdot 10^{-18}$	$+2.34 \cdot 10^{-21}$	$+2.35 \cdot 10^{-24}$	9.80
9	$-3.86 \cdot 10^{-20}$	$-5.12 \cdot 10^{-23}$	$-5.34 \cdot 10^{-26}$	9.56
10	$-1.18 \cdot 10^{-22}$	$-3.63 \cdot 10^{-26}$	$-9.35 \cdot 10^{-30}$	11.66

- where $|\Delta_{d}| = 1/d$: is the volume of the simplex. Here N_{dp} is the number of nodes, w_j are the weights, and $(x_{j1},...,x_{jd})$ are the nodes.
- A method for constructing fully symmetric Gaussian quadrature rules with positive weights, and with nodes lying inside the simplex is discussed.
- The quadrature rules up to 20-th order on the tetrahedron, 16-th order on 4-simplex, 10-th order on 5- and 6-simplexes are obtained.
- For the convenience of their use, the INQSIM program was created and presented in the JINR program library (JINRLIB).
- The developed method is oriented on solving the 6D elliptic BVP by the FEM for describing the discrete spectrum of the collective model of the atomic nucleus.

- G.R. Cowper, Int. J. Num. Meth. Eng. 7 (1973) 405.
- J.N. Lyness, D. Jespersen, J. Inst. Math. Appl. 15 (1975) 19.
- P.G. Akishin, E.P. Zhidkov, JINR Commun. 11-81-395, Dubna (1981).
- D.A. Dunavant, Int. J. Num. Meth. Engineer. 21 (1985) 1129.
- J.I. Maeztu, E. Sainz de la Maza, Math. Comp. 64 (1995) 1171.
- E. Sainz de la Maza, Rev. Int. Mét. Num. para Cálc. 15 (1999) 375.
- S. Wandzura, H. Xiao Comp. Math. Appl. 45 (2003) 1829.
- M.A. Taylor, B.A. Wingate, L.P. Bos, , arXiv:math/0501496, (2007).
- L. Zhang, T. Cui, H. Liu, J. Comput. Math. 27 (2009) 89.
- H. Xiao, Z. Gimbutas, Comp. Math. Appl. 59 (2010) 663.
- D.M. Williams, L. Shunn, A. Jameson, J. Comp. Appl. Math. 266 (2014) 18.
- F.D. Witherden, P.E. Vincent, Comp. Math. Appl. 69 (2015) 1232.
- A.A. Gusev, et al, Lecture Notes in Computer Science 11077 (2018) 197.
- S. Geevers, et al Siam J. Sci. Comput. 41 (2019) A1041.
- B.A. Freno, et al Comp. Math. Appl. 79 (2020) 2885.
- D.M. Williams, C.V. Frontin, et al, Comp. Math. Appl. 80 (2020) 1405.
- J. Jaśkowiec, N. Sukumar, Int. J. Num. Meth. Eng. 121 (2020)2418;122(2021)148.
- C.V. Frontin, G.S. Walters, et al, Appl. Num. Math. 166 (2021) 92. THANK YOU FOR YOUR ATTENTION