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Abstract. A method for constructing fully symmetric quadrature rules of
Gaussian type with positive weights, and with nodes lying inside the sim-
plex and their applications are discussed.

Introduction

Substantial part of mathematical models in nuclear physics are formulated ini-
tially as the multidimensional elliptic boundary-value problems, for example, the
consistent quadrupole-octupole vibration collective nuclear model [1]. To study
such models a signi�cant computer resource is needed because for its reduction,
where the potential energy and components of the metric tensor are given by an
order of 2 × 106 tabular values, to an algebraic problem the Monte-Carlo calcu-
lations of multidimensional integrals where conventionally applied. Some win can
be achieved by application of the new economical computational schemes of the
�nite element method (FEM) [2].

The key problem in the implementation of the FEM schemes is the calcula-
tion of multidimensional integrals. It is well known [3] that as a result of applying
the p-th order FEM to the solution of the discrete spectrum problem for the elliptic
(Schrödinger) equation, the eigenfunction and the eigenvalue are determined with
an accuracy of the order p+ 1 and 2p, respectively, provided that all intermediate
quantities are calculated with a su�cient accuracy. It follows that for the realiza-
tion of the FEM of the order p, the corresponding integrals must be computed at
least with an accuracy of the order 2p. The most economical way of calculating of
such integrals is the application of the quadratures of the Gaussian type.

In this talk, we restrict ourselves to constructing a system of nonlinear al-
gebraic equations and numerical methods for solving it. The detailed description
of construction of the fully symmetric quadrature rules with positive weights and
with nodes lying in the simplex is given in [4].
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1. Fully symmetric quadrature rules for the d-simplex

Let us construct the d-dimensional p-ordered quadrature rule∫
∆d

V (x)dx=
1

d!

Ndp∑
j=1

wjV (xj1, . . . , xjd), x=(x1, . . . , xd), dx=dx1 · · · dxd, (1)

for integration over the d-dimensional standard unit simplex ∆d with vertices
x̂j = (x̂j1, . . . , x̂jd), x̂jk = δjk, j = 0, . . . , d, k = 1, . . . , d, which is exact for all
polynomials of the variables x1, . . . , xd of degree not exceeding p. In Eq. (1) Ndp

is the number of nodes, wj are the weights, and (xj1, . . . , xjd) are the nodes.
We consider fully symmetric quadrature rules with positive weights and with

nodes lying in the simplex (so-called PI-type) and for this will use the symmetric
combinations of barycentric coordinates (BC) (y1, . . . , yd+1) that called orbits [4].
The orbit S[i] ≡ Sm1...mrdi

contains the BC

(y1, . . . , yd+1) = (

m1 times︷ ︸︸ ︷
λ1, . . . , λ1, . . . ,

mrdi
times︷ ︸︸ ︷

λmrdi
, . . . , λmrdi

),
rdi∑
j=1

mj = d+ 1,

rdi∑
j=1

mjλj = 1, m1 ≥ · · · ≥ mrdi .

Substituting symmetric polynomials of degree p in (1) instead of V (x), we
obtain a system of nonlinear algebraic equations w.r.t unknowns Wi,j and λi,jl:∫

∆d

sl22 s
l3
3 × · · · × s

ld+1

d+1dx =
1

d!

Md∑
i=0

Pdi

Kdi∑
j=1

Wi,js
l2
i,j2s

l3
i,j3 × · · · × s

ld+1

i,jd+1, (2)

sk =

d+1∑
l=1

xkl , si,jk =

rdi∑
l=1

mlλ
k
i,jl 2l2 + 3l3 + · · ·+ (d+ 1)ld+1 ≤ p,

where Pdi is the number of di�erent permutations of the BC corresponded to
the orbit S[i]. The number of independent equations for fully symmetric p-order
quadrature rules is presented in Table 1.

d\p 4 6 8 10 12 14 16 18 20
2 4 7 10 14 19 24 30 37 44
3 5 9 15 23 34 47 64 84 108
4 5 10 18 30 47 70 101 141 192
5 5 11 20 35 58 90 136 199 282
6 5 11 21 38 65 105 164 248 364

Table 1. The numbers Edp of independent equations for fully
symmetric p-order quadrature rules.
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2. Numerical technique

We have chosen a modi�ed Levenberg-Marquardt method [5, 6] to solve a system of
nonlinear equations with convex constraints, that is more robust to the initial guess
than Newton-type methods, and can be more stable than Newton-type method in
the cases when the inverse problem becomes ill-posed.

Consider the problem of solving the constrained system of nonlinear equations

fi(x) = 0, i = 1, . . . ,m, x = (x1, . . . , xn) ∈ X, (3)

and the corresponding minimization problem

min
x∈X
‖F(x)‖2, F(x) = (f1(x), . . . , fm(x))T , (4)

where X ⊆ Rn is a nonempty, closed and convex set. LM-type algorithm is an
iterate method which, basically, solves at each iteration a linearization subproblem
with the form

min
xk+h∈X

Gk(h), Gk(h) =
1

2
‖F(xk) + Jkh‖2 +

1

2
µk(h,Dkh), (5)

where xk is the current iterate, Jk ∈ Rm×n is a Jacobian of F(x) at x = xk,
Dk ∈ Rn×n is a positive diagonal matrix and in most cases Dk = diag(JT

k Jk)
or a unit matrix, and µk is a positive parameter. Note that Gk(h) is a strictly
convex quadratic function. Hence the solution Gk(h) of subproblem (5) always
exists uniquely, in particular for unconstrained case

hk = −(JT
k Jk + µkDk)−1JT

kF(xk). (6)

Conclusion

Using the presented technique the quadrature rules up to 20-th order on the tetra-
hedron, 16-th order on 4-simplex, 10-th order on 5- and 6-simplexes are obtained
[4]. For the convenience of their use, the INQSIM program for unpacking them in
expanded form, and examples of their application are provided in JINRLIB Pro-
gram Library [7]. The developed method is oriented on solving the six-dimensional
elliptic boundary value problem by the �nite element method for describing the
discrete spectrum of the collective model of the atomic nuclei [1, 2].
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