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1. Introduction

The core of AI systems is domain knowledge that is commonly expressed as logical
programs or knowledge base rules. A great deal of research has been devoted
to logical characterizations of these systems. These characterizations give formal
descriptions of otherwise obscure systems and make their results explainable. AI
systems are regularly categorized by various non-standard calculi. Models may not
be available for these calculi. In this situation, the task of developing an inference
method for a particular non-standard logic is often a complicated research project.

Arguably, sequents are the most common notation in the speci�cation of proof
theories. Sequent calculi have been used in formalizations of a variety of logics.
Sequent calculi are suitable for establishing derivation properties. Nonetheless,
they do not facilitate inference methods because some of their axioms and inference
rules constitute in�nite branching points in derivation search and because of the
variety of rule choices at any derivation step.

We suggest sequent calculi with inference rules of certain forms as a
framework for representing standard and non-standard logics having AI utility.
Logical rules in these quanti�er-free calculi are introduction rules for logical
connectives. Domain knowledge is expressed by nonlogical axioms in the form
of sequents in these calculi. Inference in these calculi can be restricted to a normal
form for which a variant of the subformula property holds.

2. Sequent Calculi

We consider quanti�er-free languages because typical AI languages such as
logic programming and knowledge base languages exclude quanti�ers [6]. Skolem
functions serve as an alternative to quanti�ers. Quanti�ers are problematic for
some non-standard logics. As usual, formulas are built recursively from atoms
and logical connectives, atom arguments are terms built recursively from object



2 Alexander Sakharov

variables, constants, and functions. We limit connectives to unary and binary. The
languages of particular calculi could be more restricted. A number of calculi related
to AI are propositional - they do not include variables. Datalog [6] does not include
functions.

Sequent calculi have axioms and inference rules [4]. Inference rules have one or
more premises and one conclusion, each of them is a sequent. We limit the number
of premises to two. Axioms are basically inference rules with zero premises. Sequent
calculi include logical axiomA ⊢ A or a similar one. Upper-case Latin letters denote
formulas in inference rules. Upper-case Greek letters are metavariables denoting
formula multisets.

It is known that sequent calculi do not necessarily have an adequate
expressiveness for some intricate logics. Sequent calculus extensions such as
hypersequents [10] have been developed to address these unusual cases. These
di�erent extensions are not covered in this paper. It is fair to say that it is not
realistic to have a universal language whose expressive power is su�cient for a
variety of sequent calculus extensions. Allowing additional logical axioms makes it
possible to express complicated logics as ordinary sequent calculi, but these axioms
may compromise important properties of sequent calculi.

A substitution is a �nite mapping of object variables to terms. The result of
applying a substitution θ to a formula A is the expression Aθ obtained from A
by simultaneously replacing every occurrence of every variable from θ by the term
with which the variable is associated. Aθ is called an instance of A. The notions
of substitution and instance can be extended onto sequents.

Nonlogical axioms are sequents containing formulas, no multiset or formula
metavariables occur in them. Any nonlogical axiom with variables represents
in�nitely many sequents. Each of these sequents is an instance of the axiom.
Nonlogical axioms represent knowledge base rules and facts (or logical programs).
They express properties of concrete predicates and functions.

Usually, the outcome of inference is sequents ⊢ G where formula G is called
a goal. Unlike goals for theorem provers, goals for AI systems as well as formulas
in nonlogical axioms are shallow formulas. An axiom is called reducible if it has
an instance with two or more identical formulas. A calculus is called consistent if
sequent ⊢ is not derivable. Inconsistent calculi without nonlogical axioms are not
worth investigating but it is acceptable for nonlogical axioms to be the source of
inconsistency. Argumentation deals with inconsistent sets of nonlogical axioms [1].

Inference rules in sequent calculi are split into structural and logical. The
structural rules are essentially universal for all of the calculi whereas logical rules
vary. Given the multiset view of antecedents and succedents, the structural rules
are weakening, contraction, and cut [4]. Some of these structural rules may be
missing in some calculi. Some calculi restrict the number of formulas in succedents
to one. We do not consider calculi with other constraints.

Every formula from the conclusion of a logical inference rule that is not
identical to a formula from a premise is called principal. Every formula from
premises that is not identical to a formula from the conclusion is called active.
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All other formulas are called contexts. Let ⋄ denote a unary connective, ◦ denote
a binary connective. Let ⋄Π denote {⋄A|A ∈ Π}.

De�nition 1. A logical inference rule is called an introduction rule if it has one of
the following forms and does not have any applicability provisos.

A,Γ ⊢ Π

⋄A,Γ ⊢ Π
L1

A ⊢ ⋄Π
⋄A ⊢ ⋄Π LP

Γ ⊢ A,Π

Γ ⊢ ⋄A,Π
R1

⋄Γ ⊢ A
⋄Γ ⊢ ⋄A RP

A,Γ ⊢ Π

Γ ⊢ ⋄A,Π
F1

Γ ⊢ A,Π

⋄A,Γ ⊢ Π
B1

Γ ⊢
⋄Γ ⊢ LO

Γ ⊢ A
⋄Γ ⊢ ⋄A RL

⊢ Π
⊢ ⋄Π RO

A ⊢ Π
⋄A ⊢ ⋄Π LR

A,B,Γ ⊢ Π

A ◦B,Γ ⊢ Π
L2

Γ ⊢ A,B,Π

Γ ⊢ A ◦B,Π
R2

A,Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
F2

A,Γ ⊢ B,Π

A ◦B,Γ ⊢ Π
B2

A,Γ ⊢ Π B,Γ ⊢ Π

A ◦B,Γ ⊢ Π
LA

B,Γ ⊢ Π B,∆ ⊢ Σ

A ◦B,Γ,∆ ⊢ Π,Σ
LM

Γ ⊢ A,Π Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
RA

Γ ⊢ A,Π ∆ ⊢ B,Σ

Γ,∆ ⊢ A ◦B,Π,Σ
RM

B,Γ ⊢ Π ∆ ⊢ A,Σ

Γ,∆ ⊢ A ◦B,Π,Σ
FM

B,Γ ⊢ Π ∆ ⊢ A,Σ

A ◦B,Γ,∆ ⊢ Π,Σ
BM

De�nition 2. A sequent calculus is called a LA calculus if it has one logical axiom
A ⊢ A and possibly nonlogical axioms, the cut rule, possibly the two weakening
rules, possibly the two contraction rules, some introduction logical rules, and
- for every unary connective ⋄, the rules with this connective are limited to one R1
rule and possibly one L1 or LP rule, one RP rule and possibly one L1 rule, one
F1 rule and possibly one B1 rule, one RL rule and one of LO/L1 rules, or one
LR rule and one of RO/R1 rules,

- for every binary connective ◦, the rules with this connective are limited to one
R2 rule and possibly one LA rule, one R2 rule and possibly one LM rule, one
RA rule and possibly one L2 rule, one RM rule and possibly one L2 rule, one F2
rule and possibly one BM rule, or one FM rule and possibly one B2 rule.

The idea of introduction rules is that every formula from a premise is a
subformula of some formula from the conclusion. There are some non-standard
logics that cannot be speci�ed by calculi with introduction rules. One example
of that is temporal logics. Their sequent calculi include logical rules in which
some formulas in the conclusion are proper subformulas of ones in the premise
[5]. The choice of the introduction rule forms is dictated by the desideratum of
the subformula property. For that reason, rules with syntactic constraints on both
antecedent and succedent contexts such as S5 rules are excluded [10]. No surprise
that the introduction rules correspond to the calculi that enjoy cut admissibility
in the absence of nonlogical axioms.

Clearly, the quanti�er-free fragments of classical and intuitionistic �rst-order
logics are LA calculi. Other examples of LA calculi include multiplicative linear



4 Alexander Sakharov

logic [2], the LK−c calculi of evaluable non-Horn knowledge bases [7], modal logic
S4 [10], standard deontic logic [1].

3. Normal Form

The object of this investigation is sets (families) of LA calculi in which structural
and logical inference rules are �xed and every calculus in the set has its own set of
nonlogical axioms. Any calculus in a set corresponds to an AI system, predicates
and functions are constants from a �nite set determined by the domain of the
system. Basically, such set of calculi corresponds to a logic for a variety of domains.
We do not consider calculi without the cut rule. This rule plays the role of Modus
Pones. Without Modus Pones, nonlogical axioms are useless.

Let [Γ] denote the result of applying zero or more possible contractions to
multiset Γ. If a calculus set does not include contraction, then [Γ] = Γ. If a
calculus includes both weakening and contraction, then the [ ] operation eliminates
all duplicate formulas. If a calculus includes contraction and does not include
weakening, then this operation is non-deterministic. Let us modify the conclusion
of the cut rule and all logical rules by applying [ ] to both the antecedent and the
succedent. For instance, cut and BM become

Γ ⊢ A,∆ A,Π ⊢ Σ

[Γ,Π] ⊢ [∆,Σ]
cut

A,Γ ⊢ Π ∆ ⊢ B,Σ

[A ◦B,Γ,∆] ⊢ [Π,Σ]
BM

De�nition 3. The calculi obtained from LA by applying [ ] to both antecedent and
succedent in the conclusion of cut and logical inference rules are called L′

A.

Proposition 1. For any LA calculus and its L′
A counterpart, any LA derivation

can be transformed into a L′
A derivation with the same endsequent and vice versa.

Proposition 2. The contraction rules are admissible in L′
A derivations for calculi

with non-reducible nonlogical axioms.

Theorem 1. (normal form) For a consistent L′
A calculus with non-reducible

nonlogical axioms, every derivation with endsequent ⊢ G can be transformed
into such derivation with the same endsequent and without contractions that the
following holds:
1) (weak subformula property) Every formula in the derivation is G, its subformula,

or an instance of a formula from a nonlogical axiom or its subformula.
2) Every cut formula is an instance of a formula from a nonlogical axiom.
3) If one premise of cut is the conclusion of a logical rule, then the cut formula is

principal in the logical rule and the other premise is a nonlogical axiom or the
conclusion of another cut.

4) The conclusion of every weakening is the premise of L2, R2, F2, B2, LA,RA,
or another weakening.

5) Every weakening formula is active in the �rst descendant L2, R2, F2, B2 rule
or adds a formula to the context of a premise of the �rst descendant LA,RA
rule from the context of the other premise of the latter rule.
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Theorem 2. For a L′
A calculus without LP, RP rules and a simpli�cation order [3],

every derivation of ⊢ G can be transformed into such normal-form derivation that
every cut formula is maximal with respect to such formulas from both the succedent
of the �rst premise and the antecedent of the second premise that are not G, its
subformulas, or instances of proper subformulas of nonlogical-axiom formulas.

Consider the following rules:

A,Γ ⊢ Π

A ◦B,Γ ⊢ Π
L2+

B,Γ ⊢ Π

A ◦B,Γ ⊢ Π
L2∗

Γ ⊢ A,Π

Γ ⊢ A ◦B,Π
R2+

Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
R2∗

A,Γ ⊢ Π

Γ ⊢ A ◦B,Π
F2+

Γ ⊢ B,Π

Γ ⊢ A ◦B,Π
F2∗

A,Γ ⊢ Π

A ◦B,Γ ⊢ Π
B2+

Γ ⊢ B,Π

A ◦B,Γ ⊢ Π
B2∗

A,Γ ⊢ Π B,∆ ⊢ Σ

A ◦B,Γ ∪∆ ⊢ Π ∪ Σ
LA∗ Γ ⊢ A,Π ∆ ⊢ B,Σ

Γ ∪∆ ⊢ A ◦B,Π ∪ Σ
RA∗

De�nition 4. The calculi obtained from L′
A calculi with weakening by adding

the L2+, R2+, L2∗, R2∗, F2+, B2+, F2∗, B2∗ rules and replacing the LA,RA rules
with the LA∗, RA∗ rules, respectively, are called L′′

A. The L′
A calculi without

weakening have identical L′′
A counterparts.

Proposition 3. For any L′
A calculus and its L′′

A counterpart, any L′
A derivation

can be transformed into a L′′
A derivation with the same endsequent and vice versa.

Proposition 4. For a consistent L′
A calculus with non-reducible nonlogical axioms,

every derivation with endsequent ⊢ G can be transformed into a normal-form L′′
A

derivation with the same endsequent and without the weakening rules.

4. Conclusion

The subformula property is a desirable property for any calculus. This property is
a corollary and a primary reason for cut elimination. In general, cut elimination is
not possible for sequent calculi with nonlogical axioms. The normal-form theorem
shows that derivations can be limited to those satisfying the weak subformula
property for a wide class of calculi with nonlogical axioms even though cut
is not admissible in them. This theorem gives other constraints for inference
rules. Weakening can be embedded into logical rules. Theorem 2 adapts ordered
resolution [3] to sequent derivations. It states an additional constraint for the cut
rule.

Due to the weak subformula property, the choices for A in the logical axiom
A ⊢ A, the choices for the weakening formulas, and the choices for the principal
formulas of logical rules can be limited to the goal, its subformulas, and instances of
formulas from nonlogical axioms and their subformulas. Given that the majority
of formulas in nonlogical axioms are expected to be shallow, the sets of their
subformulas are rather small.

The instantiation of nonlogical axioms, formulas in the logical axiom, and
the weakening formulas is a potential source of in�nite branching in inference
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procedures. Fortunately, this problem is solved by using formulas from nonlogical
axioms and their subformulas `as is' after renaming object variables and by
embedding uni�cation in inference rules [9]. There exist e�cient uni�cation
algorithms [8]. They are applicable to quanti�er-free �rst-order formulas because
these formulas can be treated as terms whose signature is extended with predicates
and logical connectives.
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