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Abstract. By numerical experiments, it is discovered some strictures in dis-
tribution of cubic and quartic exponential sums of additive type in �nite �elds.
Concerning the cubic sums, we give a theoretical explanation for that. For the
quartic sums, we observe numerically that Euler's deltoid play role in their
distribution.

Introduction

Consider the �eld Fp = Z/pZ of prime order p, its additive character

x 7→ ep(x) = exp(2πix/p), x ∈ Fp,

a one-variable polynomial f over Fp and an additive type exponential sum

Sp(f) =
∑
x∈Fp

ep
(
f(x)

)
.

The Weil inequality |Sp(f) | ≤ (deg f − 1)
√
p is valid for all the sums whenever

p - deg f . That means, the points

Ep(f) =
1

(deg f − 1)
√
p
Sp(f)

are located in the unit disk D =
{
z ∈ C

∣∣ |z | ≤ 1
}
. See [1], [2].

Given a one-variable polynomial f over Z, consider f as a polynomial over each
of Fp just by reduction its coe�cients mod p. Then one may look on distribution
of the points Ep(f) (with prime p = 2, 3, 5, 7 . . . ) in the disk D. We have used
computer algebra systems PARI and MAPLE to study numerically the sums Sp(f)
for lot of polynomials f of degree 3 and 4.
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Cubic sums

Consider one instructive sample in [3]. On the picture below we have plotted the
real coordinate axis, the imaginary coordinate axis, the unit disk D ⊂ C, and the
points Ep(f) ∈ D for the polynomial f(x) = 6x3 + 3x2 + 4x and for all prime
p ≤ 100000.

The points Ep(f) are concentrated mainly along few lines passing through the
point 0. One has a similar picture for other polynomials as well. The number of
lines depends on f .

To state our results, let us agree to write {t} for the fractional part of t ∈ R. We
have proved [4] the following two propositions.

Consider a cubic polynomial f(x) = ax3 + bx2 + cx over Z. Let l be an integer,
gcd(l, 3a) = 1, and let p be any prime under the conditions lp+ 1 ≡ 0 mod 27a3

and p - 6a. If Sp(f) 6= 0, then the real axis forms the angle

θp = 2π
{b (2b2 − 9ac)

27a2

(
l +

1

p

)}
with the line passing through the points 0 and Sp(f).

This proposition implies easily the second one.

Consider a cubic polynomial f(x) = ax3 + bx2 + cx+ d over Z. The points Ep(f)
are concentrated along the lines that pass through the point 0 and intersect the real

axis under the angles

θ = 2π
{b (2b2 − 9ac)

27a2
l
}

with l ∈ Z under the condition gcd(l, 3a) = 1.

This result gives us full description of the asters attached to cubic polynomials in
[3]. Also, it shows that there are no at all the clusters considered in [3].
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Quartic sums

For some quartic polynomials f , we have �nd empirically that almost all of the
points Ep(f) are located on few intervals in D. Let us look on two samples. On
the pictures below we have plotted the real and imaginary coordinate axes, the
disk D ⊂ C, and the points Ep(f) ∈ D for chosen polynomials f and for all prime
p ≤ 480000. The sums Sp(f) with f(x) = x4 are nothing but the biquadratic Gauss
sums. By known explicit formulas, one has either Ep(f) = i/3 or Ep(f) ∈ [−1/3, 1]
or Ep(f) ∈ [1/3 − 2i/3, 1/3 + 2i/3] according to p ≡ 3 (mod 4) or p ≡ 1 (mod 8)
or p ≡ 5 (mod 8). This case is represented by the left-hand side picture below.

The right-hand side picture represents similarly the case f(x) = 7x4+x2. Assume
r ∈ Z and gcd(r, 56) = 1. It seems reasonable to expect that the points Ep(f) with
p ≡ r (mod 56) form one of 24 intervals shown on the picture.
There are other polynomials f with entirely di�erent distribution of the points
Ep(f). Two typical samples are given on the pictures below.
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For the polynomial f(x) = 4x4+8x3+3x2+6, the points Ep(f) with p ≤ 1000000
forms the left-hand side picture. We see that the points Ep(f) are located within
some three-cusped curve. The right-hand side picture is formed similarly for f(x) =
7x4 + 1. For a lot of polynomials f , we have similar pictures � formed by 1, 2, 4, 8
triangles bounded by the same three-cusped curve�.

We conjecture that the three-cusped curve discussed is the Euler deltoid considered

in 1745 in connection with an optical problem.

The deltoid can be de�ned as the curve consisting of the points z = x + iy ∈ C
satisfying 3(x2 + y2)(x2 + y2 + 2) = 8x3 − 24xy2 + 1 with x, y ∈ R.

Also, the deltoid can be created by a point on the circumference of a circle of
radius 1/3 as it rolls without slipping along the inside of a circle of radius 1.
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