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Set up

Consider the �eld Fp = Z/pZ of prime order p, its additive character

x 7→ ep(x) = exp(2πix/p), x ∈ Fp,

a one-variable polynomial f over Fp and related exponential sum of

additive type

Sp(f ) =
∑
x∈Fp

ep
(
f (x)

)
.

The sums have been studied by Gauss, Kummer, Artin, Davenport,

Hasse, Weil, Birch, Patterson and other authors in connection with

reciprocity lows and other problems in number theory.
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One knows, the classical Weil inequality

| Sp(f ) | ≤ (deg f − 1)
√
p

is valid for all the sums whenever p - deg f . That means, one has

Sp(f ) = (deg f − 1)
√
p Ep(f )

with some points Ep(f ) located in the unit disk

D =
{
z ∈ C

∣∣ |z | ≤ 1
}
.
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Given a polynomial f over Z, we may naturally consider f as

a polynomial over each of Fp = Z/pZ , p = 2, 3, 5, 7, . . . , and
we may look on

Distribution of the points Ep(f ) in the disk D.

That is the main problem we are interested in our experiments.

We have used computer algebra systems PARI and MAPLE to

study numerically the sums Sp(f ) and the related points Ep(f )
for lot of polynomials f of degree 3 and 4.
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Cubic sums.

Let us begin with some instructive samples. We have plotted the real

and imaginary coordinate axes, the disk D and the points Ep(f ) for

f (x) = 6x3 + 3x2 + 4 x and p ≤ 100000.

It is seen that the points Ep(f ) are
concentrated along 6 lines passing

through the point 0. The points
distributed sporadically are those

few Ep(f ) that are located far away

from the limit lines.
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For one more sample, we take f (x) = 5x3 + 6x2 − 3x . This case, the
points Ep(f ) with p ≤ 100000 are

concentrated along 20 lines passing

through the point 0.

One has a similar aster-type pictures

for lot of cubic polynomials over Z.
The points Ep(f ) are concentrated

along few lines passing through the

point 0.
I talked about that at PCA 2022.
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Now we can supply these observations with proofs.

To state our results, let us agree to write {t} for the fractional part
of t ∈ R. We have the following two propositions.

Consider a cubic polynomial f (x) = ax3 + bx2 + cx over Z. Let l be
an integer, gcd(l , 3a) = 1, and let p be any prime under the

conditions lp + 1 ≡ 0 mod 27a3 and p - 6a. If Sp(f ) 6= 0, then the

real axis forms the angle

θp = 2π
{b (2b2 − 9ac)

27a2

(
l +

1

p

)}
with the line passing through the points 0 and Sp(f ).
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This proposition implies easily the second one.

Consider a cubic polynomial f (x) = ax3 + bx2 + cx + d over Z. The
points Ep(f ) are concentrated along the lines that pass through the

point 0 and intersect the real axis under the angles

θ = 2π
{b (2b2 − 9ac)

27a2
l
}

with l ∈ Z under the condition gcd(l , 3a) = 1.

This result gives us full description of the asters attached to cubic

polynomials.
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Quartic sums.

For some quartic polynomials f , we have �nd empirically that almost

all of the points Ep(f ) are located on few intervals in D. To illustrate

this phenomenon, consider two samples.

On the pictures below we have plotted the real and imaginary

coordinate axes, the disk D ⊂ C, and the points Ep(f ) ∈ D for

chosen polynomials f and for all prime p ≤ 480000.

For the �rst sample, take f (x) = x4. This case, the sums Sp(f ) are
nothing but the biquadratic Gauss sums. These Sp(f ) are the only
quartic sums known explicitly.
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By Gauss formulas, one has either Ep(f ) = i/3 or Ep(f ) ∈ [−1/3, 1]
or Ep(f ) ∈ [1/3− 2i/3, 1/3 + 2i/3] according to p ≡ 3 mod 4 or

p ≡ 1 mod 8 or p ≡ 5 mod 8.

The points Ep(f ) form dense

subsets of the intervals.
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For the second sample, take f (x) = 7x4 + x2. The picture consists of
24 intervals and one more point. Assume r ∈ Z and gcd(r , 56) = 1.

It seems reasonable to expect that the points

Ep(f ) with p ≡ r mod 56 form one of

24 intervals shown on the picture.
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There are other polynomials f with entirely di�erent distribution of

the points Ep(f ). Two typical samples are given on the pictures below.
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For the polynomial f (x) = 4x4 + 8x3 + 3x2 + 6, the points Ep(f )
with p ≤ 1000000 forms the left-hand side picture. We see that the

points Ep(f ) are located within some three-cusped curve. The

right-hand side picture is formed similarly for f (x) = 7x4 + 1. For a
lot of polynomials f , we have similar pictures � formed by 1, 2, 4, 8
triangles bounded by the same three-cusped curve�.

We conjecture that the three-cusped curve discussed is the Euler

deltoid considered in 1745 in connection with an optical problem.
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The deltoid consists of the points z = x + iy ∈ C satisfying

3(x2 + y 2)(x2 + y 2 + 2) = 8x3 − 24xy 2 + 1 with x , y ∈ R.

Also, the deltoid can be created by a point on the circumference of

a circle of radius 1/3 as it rolls without slipping along the inside of

a circle of radius 1.
N. V. Proskurin, PDMI, St. PetersburgSome observations on degree 3 and 4 exponential sums over �nite �eldsApril 18, 2023 14 / 15



Sp(f ) =

{√
p ±

√
2p + 2a

√
p for p ≡ 1 mod 8

√
p ± i

√
2p − 2a

√
p for p ≡ 5 mod 8

a2 + b2 = p, a ≡ −1 mod 4, a, b ∈ Z
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